题目内容

13.已知x∈(0,+∞)有下列各式:x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$=$\frac{x}{3}$+$\frac{x}{3}$+$\frac{x}{3}$+$\frac{27}{{x}^{3}}$≥4成立,观察上面各式,按此规律若x+$\frac{a}{{x}^{4}}$≥5,则正数a=44

分析 由已知中的不等式,归纳推理得:x+$\frac{{n}^{n}}{{x}^{n}}$≥n+1,进而根据n+1=5,求出n值,进而得到a值.

解答 解:由已知中:x∈(0,+∞)时,
x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$=$\frac{x}{2}$+$\frac{x}{2}$+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$=$\frac{x}{3}$+$\frac{x}{3}$+$\frac{x}{3}$+$\frac{27}{{x}^{3}}$≥4

归纳推理得:x+$\frac{{n}^{n}}{{x}^{n}}$≥n+1,
若x+$\frac{a}{{x}^{4}}$≥5,
则n+1=5,即n=4,
此时a=nn=44
故答案为44

点评 本题考查的知识点是归纳推理,其中根据已知归纳推理得:x+$\frac{{n}^{n}}{{x}^{n}}$≥n+1,是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网