题目内容
若点A(a,b)(其中a≠b)在矩阵M=
对应变换的作用下得到的点为B(-b,a),
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=
所对应变换的作用下得到的新的曲线C′的方程.
|
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=
|
考点:变换、矩阵的相等
专题:计算题,矩阵和变换
分析:(Ⅰ)根据二阶矩阵与平面列向量的乘法,确定矩阵M,再求矩阵的逆矩阵;
(Ⅱ)设曲线C上任意一点P(x0,y0),根据矩阵变换的公式求出对应的点P′(x,y),解出由x、y表示x0,y0的式子,将点P的坐标代入曲线C方程,化简即得曲线C'的方程.
(Ⅱ)设曲线C上任意一点P(x0,y0),根据矩阵变换的公式求出对应的点P′(x,y),解出由x、y表示x0,y0的式子,将点P的坐标代入曲线C方程,化简即得曲线C'的方程.
解答:
解:(Ι)∵点A(a,b)(其中a≠b)在矩阵M=
对应变换的作用下得到的点为B(-b,a),
∴
得
…(3分)
即M=
,由M-1M=
得M-1=
.…(4分)
(Ⅱ)设P(x0,y0)是曲线C:x2+y2=1上任意一点,
则点P(x0,y0)在矩阵M对应的变换下变为点P′(x,y)
则有
=
,即
又∵点P在曲线C:x2+y2=1上,
∴4x2+y2=1,即曲线C'的方程为椭圆4x2+y2=1.
|
∴
|
|
即M=
|
|
|
(Ⅱ)设P(x0,y0)是曲线C:x2+y2=1上任意一点,
则点P(x0,y0)在矩阵M对应的变换下变为点P′(x,y)
则有
|
|
|
|
又∵点P在曲线C:x2+y2=1上,
∴4x2+y2=1,即曲线C'的方程为椭圆4x2+y2=1.
点评:本题主要考查矩阵乘法、逆矩阵与变换,考查了曲线方程的求法等基本知识,考查运算求解能力,
练习册系列答案
相关题目
已知向量
=(cos75°,sin75°),
=(cos15°,sin15°),那么|
+2
|的值为( )
| a |
| b |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
| D、3 |