题目内容
{an}是等差数列,Sn是其前n项和,a1-a4-a8+2a6+a15=2,则S15=( )
| A、30 | B、15 |
| C、-30 | D、-15 |
考点:等差数列的性质
专题:等差数列与等比数列
分析:设等差数列{an}的公差为d,代入已知式子化简可得a8=1,由求和公式和性质可得S15=15a8,代入计算即可.
解答:
解:设等差数列{an}的公差为d,
则a1-a4-a8+2a6+a15=a1-(a1+3d)-(a1+7d)+2(a1+5d)+(a1+14d)
=2a1+14d=2(a1+7d)=2a8=2,解得a8=1,
∴S15=
=
=15a8=15
故选:B
则a1-a4-a8+2a6+a15=a1-(a1+3d)-(a1+7d)+2(a1+5d)+(a1+14d)
=2a1+14d=2(a1+7d)=2a8=2,解得a8=1,
∴S15=
| 15(a1+a15) |
| 2 |
| 15×2a8 |
| 2 |
故选:B
点评:本题考查等差数列的性质和求和公式,得出a8=1是解决问题的关键,属基础题.
练习册系列答案
相关题目
等差数列{an}中,a2=5,a6=33,则a3+a5=( )
| A、33 | B、28 | C、38 | D、52 |
从5台不同的“联想”电脑和4台不同的“方正”电脑中任选4台,其中既有“联想”电脑又有“方正”电脑的所有不同的选法种数为( )
| A、120种 | B、100种 |
| C、80种 | D、60种 |
下列各组向量中,可以作为基底的是( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
函数 y=f(x),x∈D,若存在常数C,对任意的x1∈D,存在唯一的x2∈D使得
=C,则称函数f(x)在D上的几何平均数为C.已知f(x)=x3,x∈[1,2],则函数f(x)=x3在[1,2]上的几何平均数为( )
| f(x1)f(x2) |
A、
| ||
| B、2 | ||
| C、4 | ||
D、2
|
已知映射f:M→N,使集合N中的元素y=x2与集合M中的元素x对应,要使映射f:M→N是一一对应,那么M,N可以是( )
| A、M=R,N=R |
| B、M=R,N={y|y≥0} |
| C、M={x|x≥0},N=R |
| D、M={x|x≥0},N={y|y≥0} |