题目内容
12.下列命题中正确的是( )| A. | $\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{AB}$ | B. | $\overrightarrow{AB}$=$\overrightarrow{BA}$ | C. | $\overrightarrow{0}$•$\overrightarrow{AB}$=$\overrightarrow{0}$ | D. | $\overrightarrow{AB}+\overrightarrow{BC}$$+\overrightarrow{CD}$=$\overrightarrow{AD}$ |
分析 根据向量的加减的几何意义和向量的数量积运算即可判断
解答 解:$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{BA}$,$\overrightarrow{AB}$=-$\overrightarrow{BA}$,$\overrightarrow{0}$•$\overrightarrow{AB}$=0,$\overrightarrow{AB}+\overrightarrow{BC}$$+\overrightarrow{CD}$=$\overrightarrow{AD}$,
故选:D
点评 本题考查了向量的加减的几何意义和向量的数量积运算,属于基础题.
练习册系列答案
相关题目
13.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x}+ax,x≤0}\\{(4-a)x+2a,x>0}\end{array}\right.$若对于任意两个不等实数x1,x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>1成立,则实数a的取值范围是( )
| A. | [1,3) | B. | [$\frac{1}{2}$,3) | C. | [0,4) | D. | [$\frac{1}{2}$,4) |
7.已知等轴双曲线C的一个焦点是F1(-6,0),点M是等轴双曲线的渐近线上的一个动点,点P是圆(x+6)2+y2=1上的任意一点,则|PM|的最小值是( )
| A. | 3$\sqrt{2}$-1 | B. | 2$\sqrt{3}$-1 | C. | 3$\sqrt{3}$+1 | D. | 2$\sqrt{3}$+2 |
1.已知曲线$y=\frac{1}{4}{x^2}-3lnx$的一条切线的斜率为$-\frac{1}{2}$,则切点的横坐标为( )
| A. | -3 | B. | 2 | C. | -3或2 | D. | $\frac{1}{2}$ |
2.函数$f(x)=\frac{1}{2}cos(ωx+φ)$(ω>0,$|φ|<\frac{π}{2}$)的部分图象如图所示,则φ的值为( )

| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $-\frac{π}{6}$ | D. | $-\frac{π}{3}$ |