题目内容

如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,PA⊥PD,E、F分别为PC、BD的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:平面PAB⊥平面PDC.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(I)连接AC,利用三角形中位线的性质,证明EF∥PA,利用线面平行的判定,可得EF∥平面PAD;
(Ⅱ)先证明CD⊥平面PAD,可得CD⊥PA,再证明PA⊥PD,可得PA⊥平面PCD,从而可得平面PAB⊥平面PCD.
解答: 证明:(Ⅰ)连接AC,则F是AC的中点,
在△CPA中,∵E为PC的中点,
∴EF∥PA,
∵PA?平面PAD,EF?平面PAD,
∴EF∥平面PAD;
(2)∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,
∴CD⊥平面PAD,
∵PA?平面PAD,
∴CD⊥PA
又∵PA⊥PD,CD∩PD=D,
∴PA⊥平面PCD,
又PA?平面PAB,
∴平面PAB⊥平面PCD.
点评:本题考查线面平行的判定,考查面面垂直,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网