题目内容
19.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.(Ⅰ)求sinx-cosx的值;
(Ⅱ)求4sinxcosx-cos2x的值.
分析 (Ⅰ)利用平方,转化求解sinxcosx,通过sinx-cosx的符号,利用平方转化求解即可;
(Ⅱ)利用地一问的结果,求出正弦函数以及余弦函数的值,然后求解即可.
解答 解:(Ⅰ)因为$sinx+cosx=\frac{1}{5}$,
所以$1+2sinxcosx=\frac{1}{25}$,$2sinxcosx=-\frac{24}{25}$,…(3分)
因为$-\frac{π}{2}<x<0$,所以sinx<0,cosx>0,
所以sinx-cosx<0,${(sinx-cosx)^2}=1-2sinxcosx=\frac{49}{25}$,
所以$sinx-cosx=-\frac{7}{5}$.…(6分)
(Ⅱ)由(Ⅰ)知,$\left\{\begin{array}{l}sinx+cosx=\frac{1}{5}\\ sinx-cosx=-\frac{7}{5}\end{array}\right.$,解得$sinx=-\frac{3}{5}$,$cosx=\frac{4}{5}$,$tanx=-\frac{3}{4}$.…(9分)
4sinxcosx-cos2x=$\frac{{4sinxcosx-{{cos}^2}x}}{{{{sin}^2}x+{{cos}^2}x}}$=$\frac{4tanx-1}{{{{tan}^2}x+1}}$=$-\frac{64}{25}$.…(12分)
点评 本题考查三角函数化简求值,考查计算能力.
练习册系列答案
相关题目
9.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,m),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则2$\overrightarrow{a}$+3$\overrightarrow{b}$等于( )
| A. | (-5,-10) | B. | (-3,-6) | C. | (-4,-8) | D. | (-2,-4) |
4.下列函数中,既是偶函数又在(0,π)上单调递增的是( )
| A. | y=tanx | B. | y=cos(-x) | C. | $y=-sin({\frac{π}{2}-x})$ | D. | y=|tanx| |
9.若函数f(x)同时满足以下三个性质:
①f(x)的最小正周期为π;
②f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是减函数;
③对任意的x∈R,都有f(x-$\frac{π}{4}$)+f(-x)=0,则f(x)的解析式可能是( )
①f(x)的最小正周期为π;
②f(x)在($\frac{π}{4}$,$\frac{π}{2}$)上是减函数;
③对任意的x∈R,都有f(x-$\frac{π}{4}$)+f(-x)=0,则f(x)的解析式可能是( )
| A. | f(x)=|sin(2x-$\frac{π}{4}$)| | B. | f(x)=sin2x+cos2x | C. | f(x)=cos(2x+$\frac{3π}{4}$) | D. | f(x)=-tan(x+$\frac{π}{8}$) |