ÌâÄ¿ÄÚÈÝ

2£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×㣺2Sn=3an+n-2£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=log3£¨2an+1-1£©£¬TnΪÊýÁÐ{bn}µÄǰnÏîºÍ£¬ÁîMn=$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+¡­+$\frac{1}{{T}_{n}}$ÊÇ·ñ´æÔÚ×î´óµÄÕýÕûÊým£¬Ê¹Mn¡Ý$\frac{m}{4}$¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓõÝÍÆ¹ØÏµ¿ÉµÃ£º${a}_{n}-\frac{1}{2}$=3$£¨{a}_{n-1}-\frac{1}{2}£©$£¬ÔÙÀûÓõȱÈÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£®
£¨2£©bn=n£¬ÊýÁÐ{bn}µÄǰnÏîºÍTn=$\frac{n£¨n+1£©}{2}$£¬¿ÉµÃ$\frac{1}{{T}_{n}}$=2$£¨\frac{1}{n}-\frac{1}{n+1}£©$£®ÀûÓá°ÁÑÏîÇóºÍ¡±¿ÉµÃMn£¬ÔÙÀûÓÃÊýÁеĵ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ß2Sn=3an+n-2£¬¡àµ±n=1ʱ£¬2a1=3a1+1-2£¬½âµÃa1=1£®
µ±n¡Ý2ʱ£¬2Sn-1=3an-1+n-3£¬¡à2an=3an-3an-1+1£¬»¯Îª£º${a}_{n}-\frac{1}{2}$=3$£¨{a}_{n-1}-\frac{1}{2}£©$£¬
¡àÊýÁÐ$\{{a}_{n}-\frac{1}{2}\}$ÊǵȱÈÊýÁУ¬Ê×ÏîΪ$\frac{1}{2}$£¬¹«±ÈΪ3£®
¡àan-$\frac{1}{2}$=$\frac{1}{2}¡Á{3}^{n-1}$£¬
¡àan=$\frac{1}{2}$+$\frac{1}{2}¡Á{3}^{n-1}$£®
£¨2£©bn=log3£¨2an+1-1£©=n£¬
ÊýÁÐ{bn}µÄǰnÏîºÍTn=$\frac{n£¨n+1£©}{2}$£¬
$\frac{1}{{T}_{n}}$=2$£¨\frac{1}{n}-\frac{1}{n+1}£©$£®
ÁîMn=$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+¡­+$\frac{1}{{T}_{n}}$=2$[£¨1-\frac{1}{2}£©$+$£¨\frac{1}{2}-\frac{1}{3}£©$+¡­+$£¨\frac{1}{n}-\frac{1}{n+1}£©]$=2$£¨1-\frac{1}{n+1}£©$=$\frac{2n}{n+1}$£®
¼ÙÉè´æÔÚ×î´óµÄÕýÕûÊým£¬Ê¹Mn¡Ý$\frac{m}{4}$¶¼³ÉÁ¢£®
Ôòm¡Ü$\frac{8n}{n+1}$£¬
$\frac{8n}{n+1}$=$\frac{8}{1+\frac{1}{n}}$¡Ý4£¬µ±n=1ʱȡµÈºÅ£¬
¡àm¡Ü4£®
¡à´æÔÚ×î´óµÄÕýÕûÊým=4£¬Âú×ãÌõ¼þ£®

µãÆÀ ±¾Ì⿼²éÁ˵ȱÈÊýÁеÄͨÏʽ¡¢¡°ÁÑÏîÇóºÍ¡±¡¢ÊýÁеĵ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø