题目内容
17.已知数列{an}的各项都是正数,其前n项和Sn=$\frac{{{a}_{n}}^{2}+{a}_{n}}{2}$(n∈N*),数列{bn}满足bn=$\frac{121}{n+1}$(n∈N*),则当an+bn取最小值时n=10.分析 求出{an}的通项公式,利用基本不等式求出an+bn的最小值及其条件.
解答 解:∵当n=1时,a1=$\frac{{{a}_{1}}^{2}+{a}_{1}}{2}$,∵a1>0,∴a1=1.
当n≥2时,an=Sn-Sn-1=$\frac{{{a}_{n}}^{2}-{{a}_{n-1}}^{2}+{a}_{n}-{a}_{n-1}}{2}$,∴an+an-1=(an+an-1)(an-an-1).
∵数列{an}的各项都是正数,∴an+an-1≠0,∴an-an-1=1.
∴{an}是以1为首项,以1为公差的等差数列.∴an=n.
∴an+bn=n+1+$\frac{121}{n+1}$-1≥2$\sqrt{121}$-1=21.当且仅当n+1=$\frac{121}{n+1}$即n=10时取等号.
故答案为10.
点评 本题考查了数列的递推公式,基本不等式,等差数列的通项公式,属于中档题.
练习册系列答案
相关题目
5.已知数列{an}的前n项和Sn=$\frac{3}{2}$(3n-1),则数列{$\frac{1}{(lo{g}_{3}{a}_{n+1})(lo{g}_{3}{a}_{n+2})}$}的前10项和为( )
| A. | $\frac{5}{6}$ | B. | $\frac{11}{12}$ | C. | $\frac{10}{11}$ | D. | $\frac{5}{12}$ |
12.设点P分有向线段$\overrightarrow{{P}_{1}{P}_{2}}$的比是λ,且点P在有向线段$\overrightarrow{{P}_{1}{P}_{2}}$的延长线上,则λ的取值范围是( )
| A. | (-∞,-1) | B. | (-1,0) | C. | (-∞,0) | D. | (-∞,-$\frac{1}{2}$) |
9.已知f(x)=sin(ωx+$\frac{π}{4}$)(ω>0),若f($\frac{π}{2}$)=f(π),且在区间($\frac{π}{2}$,π)内,f(x)≤f($\frac{π}{2}$),则ω=( )
| A. | $\frac{1}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{1+8k}{3}$,k∈N | D. | $\frac{5+8k}{3}$,k∈N |
6.数列1,$\frac{1}{2}$,$\frac{1}{{2}^{2}}$,…,$\frac{1}{{2}^{n}}$,则各项和等于( )
| A. | 2-$\frac{1}{{2}^{n}}$ | B. | 1-$\frac{1}{{2}^{n}}$ | C. | 1-$\frac{1}{{2}^{n+1}}$ | D. | $\frac{1}{{2}^{n}}$ |