题目内容

设f(x)=ax3+bx+c为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导函数f′(x)的最小值为-12.
(1)求a,b,c的值;
(2)求函数f(x)的单调递增区间,极大值和极小值,并求函数f(x)在[-1,3]上的最大值与最小值.
考点:利用导数研究函数的极值
专题:导数的概念及应用
分析:(1)先根据奇函数求出c的值,再根据导函数f'(x)的最小值求出b的值,最后依据在x=1处的导数等于切线的斜率求出c的值即可;
(2)先求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求得区间即为单调区间,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.
解答: 解:(1)∵f(x)为奇函数,
∴f(-x)=-f(x)
即-ax3-bx+c=-ax3-bx-c
∴c=0
∵f'(x)=3ax2+b的最小值为-12
∴b=-12
又直线x-6y-7=0的斜率为
1
6
因此,f'(1)=3a+b=-6
∴a=2,b=-12,c=0.
(2)f(x)=2x3-12x.f′(x)=6(x+
2
)(x-
2
),列表如下:

所以函数f(x)的单调增区间是(-∞,
2
)和(
2
,+∞),
∵f(-1)=10,f(
2
)=-8
2
,f(3)=18
∴f(x)在[-1,3]上的最大值是f(3)=18,最小值是f(
2
)=-8
2
点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网