ÌâÄ¿ÄÚÈÝ
20£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3cos¦È}\\{y=\sqrt{3}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®£¨¢ñ£©ÇóÇúÏßC1µÄÆÕͨ·½³Ì£»
£¨¢ò£©ÒÑÖªÇúÏßC2£º$\left\{\begin{array}{l}{x=rcos¦Á}\\{y=rsin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÇÒÇúÏßC1¡¢C2µÄ½»µãÐγÉÒ»Õý·½ÐΣ¬Çó¸ÃÕý·½ÐεÄÃæ»ý£®
·ÖÎö £¨I£©¸ù¾Ýͬ½ÇÈý½Çº¯ÊýµÄ¹ØÏµÐ¤²ÎÊý¦ÈµÃ³öÆÕͨ·½³Ì£»
£¨II£©¸ù¾ÝÇúÏߵĶԳÆÐÔ¿ÉÖªÇúÏß½»µãÔÚÏóÏÞµÄ½ÇÆ½·ÖÏßÉÏ£¬Çó³ö½»µã×ø±êµÃ³öÕý·½ÐεÄÃæ»ý£®
½â´ð ½â£º£¨I£©ÇúÏßC1µÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1$£®
£¨II£©ÇúÏßC2µÄÆÕͨ·½³ÌΪx2+y2=r2£®
¡ßÇúÏßC1¡¢C2µÄ½»µãÐγÉÒ»Õý·½ÐΣ¬
¡àÁ½ÇúÏߵĽ»µã×ø±êÔÚÖ±Ïßy=¡ÀxÉÏ£®
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=x}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬½âµÃx=y=$¡À\frac{3}{2}$£®
¡àÁ½ÇúÏßÔÚµÚÒ»ÏóÏÞÄڵĽ»µã×ø±êΪ£¨$\frac{3}{2}$£¬$\frac{3}{2}$£©£®
¡àÇúÏß½»µã¹¹³ÉµÄÕý·½ÐÎÃæ»ýΪS=4¡Á£¨$\frac{3}{2}$£©2=9£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬ÇúÏߵĽ»µã×ø±êµÄÇó½â£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®ÒÔË«ÇúÏß$\frac{{x}^{2}}{3}$-y2=1µÄ×óÓÒ½¹µãΪ½¹µã£¬ÀëÐÄÂÊΪ$\frac{1}{2}$µÄÍÖÔ²µÄ±ê×¼·½³ÌΪ£¨¡¡¡¡£©
| A£® | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1 | B£® | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1 | C£® | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1 | D£® | $\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{12}$=1 |
15£®ÒÑÖªÖ±Ïßy=1-xÓëË«ÇúÏßax2+by2=1£¨a£¾0£¬b£¼0£©µÄ½¥½üÏß½»ÓÚA£¬BÁ½µã£¬ÇÒ¹ýÔµãºÍÏß¶ÎABÖеãµÄÖ±ÏßµÄбÂÊΪ$-\frac{{\sqrt{3}}}{2}$£¬Ôò$\frac{a}{b}$µÄֵΪ£¨¡¡¡¡£©
| A£® | $-\frac{{\sqrt{3}}}{2}$ | B£® | $-\frac{{2\sqrt{3}}}{3}$ | C£® | $-\frac{{9\sqrt{3}}}{2}$ | D£® | $-\frac{{2\sqrt{3}}}{27}$ |
12£®ÒÑ֪ʵÊýx£¬yÂú×ãÌõ¼þ$\left\{\begin{array}{l}y¡Üx\\ x+y¡Ý2\\ 2x+y¡Ý6\end{array}\right.$£¬Ôòz=3x+2yµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬10] | B£® | [5£¬10] | C£® | [8£¬+¡Þ£© | D£® | [8£¬10] |
9£®ÔĶÁÈçͼµÄ³ÌÐò¿òͼ£¬ÔËÐÐÏàÓ¦µÄ³ÌÐò£¬Êä³öµÄ½á¹ûΪ£¨¡¡¡¡£©

| A£® | -2 | B£® | $\frac{1}{2}$ | C£® | -1 | D£® | 2 |
10£®
ÈçͼÊÇÆßλÆÀίΪ¼×£¬ÒÒÁ½Ãû²ÎÈü¸èÊÖ´ò³öµÄ·ÖÊýµÄ¾¥Ò¶Í¼£¨ÆäÖÐm£¬nΪÊý×Ö0¡«9ÖеÄÒ»¸ö£©£¬Ôò¼×¸èÊֵ÷ֵÄÖÚÊýºÍÒÒ¸èÊֵ÷ֵÄÖÐλÊý·Ö±ðΪaºÍb£¬ÔòÒ»¶¨ÓУ¨¡¡¡¡£©
| A£® | a£¾b | B£® | a£¼b | ||
| C£® | a=b | D£® | a£¬bµÄ´óСÓëm£¬nµÄÖµÓÐ¹Ø |