题目内容

8.以双曲线$\frac{{x}^{2}}{3}$-y2=1的左右焦点为焦点,离心率为$\frac{1}{2}$的椭圆的标准方程为(  )
A.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{8}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1D.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{12}$=1

分析 求出双曲线的焦点,设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得c=2,即有a2-b2=4,又e=$\frac{c}{a}$=$\frac{1}{2}$,解得a,b,即可得到所求椭圆方程.

解答 解:双曲线$\frac{{x}^{2}}{3}$-y2=1的焦点为(±2,0),
设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得c=2,即有a2-b2=4,
又e=$\frac{c}{a}$=$\frac{1}{2}$,
解得a=4,b=2$\sqrt{3}$,
可得椭圆的方程为$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1.
故选:C.

点评 本题考查椭圆的方程的求法,注意运用待定系数法,考查双曲线的方程和性质,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网