题目内容
(1)求证:AB=AF;
(2)如果sin∠FBC=
| 3 |
| 5 |
| 5 |
考点:与圆有关的比例线段
专题:直线与圆,立体几何
分析:(1)由已知条件推导出∠ABF=∠BAD,∠BAD=∠BCA=∠BFA,从而得到∠ABF=∠BFA,由此能证明AB=AF.
(2)由已知条件推导出∠FCB=2∠ACB,BF⊥CF,sin∠FBC=cos∠FCB=cos2∠ACB=
,从而得到cos∠ACB=
=
,由已知条件推导出△ABD∽△CBA,由此能培育出AD.
(2)由已知条件推导出∠FCB=2∠ACB,BF⊥CF,sin∠FBC=cos∠FCB=cos2∠ACB=
| 3 |
| 5 |
| AC |
| BC |
| 2 | ||
|
解答:
(1)证明:∵AE=BE,∴∠ABF=∠BAD,
∵∠BAD和∠BCA是垂径定理分成的等弧所对的圆周角,
∠BCA和∠BFA是同弧所对的圆周角,
∴∠BAD=∠BCA=∠BFA,
∴∠ABF=∠BFA,∴AB=AF.
(2)解:∵AB=AF,∴∠ACB=∠ACF=
,
∴∠FCB=2∠ACB.
∵BC是⊙O的直径,∴BF⊥CF,
∴sin∠FBC=cos∠FCB=cos2∠ACB=
,
∴2(cos∠ACB)2-1=
,
∴2(cos∠ACB)2=
,∴cos∠ACB=
,
∵AB⊥AC,∴cos∠ACB=
=
,
∵∠BAD=∠ACB,∠ADB=∠CAB=90°,
∴△ABD∽△CBA,∴
=
,
∴AD=AB×
=4
×
=8.
∵∠BAD和∠BCA是垂径定理分成的等弧所对的圆周角,
∠BCA和∠BFA是同弧所对的圆周角,
∴∠BAD=∠BCA=∠BFA,
∴∠ABF=∠BFA,∴AB=AF.
(2)解:∵AB=AF,∴∠ACB=∠ACF=
| ∠FCB |
| 2 |
∴∠FCB=2∠ACB.
∵BC是⊙O的直径,∴BF⊥CF,
∴sin∠FBC=cos∠FCB=cos2∠ACB=
| 3 |
| 5 |
∴2(cos∠ACB)2-1=
| 3 |
| 5 |
∴2(cos∠ACB)2=
| 8 |
| 5 |
| 2 | ||
|
∵AB⊥AC,∴cos∠ACB=
| AC |
| BC |
| 2 | ||
|
∵∠BAD=∠ACB,∠ADB=∠CAB=90°,
∴△ABD∽△CBA,∴
| AB |
| BC |
| AD |
| AC |
∴AD=AB×
| AC |
| BC |
| 5 |
| 2 | ||
|
点评:本题考查线段相等的证明,考查线段长的求法,是中档题,解题时要认真审题,注意垂径定理、三角形相似等知识点的合理运用.
练习册系列答案
相关题目