题目内容
已知函数f(x)=(α+cos2x)cos(2x+θ)为奇函数,且f(
)=0,其中α∈R,θ∈(0,π).
(1)求α,θ的值;
(2)若f(
)=-
,α∈(
,π),求sin(α+
)的值.
| π |
| 4 |
(1)求α,θ的值;
(2)若f(
| α |
| 4 |
| 1 |
| 5 |
| π |
| 2 |
| π |
| 3 |
考点:两角和与差的正弦函数
专题:计算题,三角函数的求值
分析:(1))由f(
)=0即可求得-(α+
)sinθ=0,因为θ∈(0,π)从而可求得α=-
,又因为f(x)为奇函数,可得(-
+1)cosθ=0从而求得θ=
;
(2)由(1)得f(x)=-
sin4x.由f(
)=-
先求得cosα,sinα从而可求sin(α+
)的值.
| π |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 2 |
(2)由(1)得f(x)=-
| 1 |
| 4 |
| α |
| 4 |
| 1 |
| 5 |
| π |
| 3 |
解答:
解:(1)∵f(
)=0,∴(α+cos2
)cos(
+θ)=0,
∴-(α+
)sinθ=0
∵θ∈(0,π),∴sinθ≠0,
∴α+
=0,即α=-
.
又f(x)为奇函数,∴f(0)=0,
∴(-
+1)cosθ=0,∴cosθ=0,
∵θ∈(0,π),∴θ=
.
(2)由(1)知α=-
,θ=
,
则f(x)=(cos2x-
)•cos(2x+
)
=
•(-sin2x)
=-
sin2x•cos2x
=-
sin4x.
∵f(
)=-
,∴
sinα=
,sinα=
.
∵α∈(
,π),∴cosα=-
=-
=-
∴sin(α+
)=sinαcos
+cosαsin
=
×
-
×
=
.
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
∴-(α+
| 1 |
| 2 |
∵θ∈(0,π),∴sinθ≠0,
∴α+
| 1 |
| 2 |
| 1 |
| 2 |
又f(x)为奇函数,∴f(0)=0,
∴(-
| 1 |
| 2 |
∵θ∈(0,π),∴θ=
| π |
| 2 |
(2)由(1)知α=-
| 1 |
| 2 |
| π |
| 2 |
则f(x)=(cos2x-
| 1 |
| 2 |
| π |
| 2 |
=
| 2cos2x-1 |
| 2 |
=-
| 1 |
| 2 |
=-
| 1 |
| 4 |
∵f(
| α |
| 4 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 5 |
| 4 |
| 5 |
∵α∈(
| π |
| 2 |
| 1-sin2α |
1-(
|
| 3 |
| 5 |
∴sin(α+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=
| 4 |
| 5 |
| 1 |
| 2 |
| 3 |
| 5 |
| 1 | ||
|
4-3
| ||
| 10 |
点评:本题主要考察了两角和与差的正弦函数,属于基础题.
练习册系列答案
相关题目
若直线y=(a2-a)x+a+1与直线y=2x+3平行,则a的值为( )
| A、-1 | B、2 | C、-1或2 | D、-2 |