题目内容

在△ABC中,角A、B、C的对边分别为a,b,c,且
3
(a-ccosB)=bsinC
(1)求角C;
(2)若△ABC的面积S=
3
3
,a+b=4,求sinAsinB及cosAcosB的值.
考点:正弦定理,余弦定理
专题:计算题,解三角形
分析:(1)利用正弦定理化边为角,化简后可求;
(2)由
1
2
ab
sinC=
3
3
,得ab=
4
3
,又a+b=4,运用余弦定理可求c,由正弦定理可得
b
sinB
=
a
sinA
=
c
sinC
=
2
3
sin60°
=4,由此可得sinAsinB=
ab
16
;cosAcosB=
1-sin2A
1-sin2B
=
1-
a2
16
1-
b2
16
,配方代入数值可求;
解答: 解:(1)
3
(a-ccosB)=bsinC,
由正弦定理,得
3
(sinA-sinCcosB)=sinBsinC,
3
sin(A+B)-
3
sinCcosB=sinBsinC,即
3
sinBcosC=sinBsinC,
∴tanC=
3
,则C=60°;
(2)
1
2
ab
sinC=
1
2
absin60°=
3
3

∴ab=
4
3
,又a+b=4,
∴由余弦定理,得c2=a2+b2-2abcosC=(a+b)2-3ab=12,
∴c=2
3

由正弦定理,得
b
sinB
=
a
sinA
=
c
sinC
=
2
3
sin60°
=4,
∴a=4sinA,b=4sinB,
∴sinAsinB=
ab
16
=
4
3
16
=
1
12

可判断A、B均为锐角,
∴cosAcosB=
1-sin2A
1-sin2B

=
1-
a2
16
1-
b2
16
=
1-
a2+b2
16
+
a2b2
256
=
1-
(a+b)2-2ab
16
+
a2b2
256
=
5
12

故sinAsinB=
1
12
,cosAcosB=
5
12
点评:该题考查正弦定理、余弦定理及其应用,考查三角形面积公式、两角和与差是三角函数等知识,考查学生综合运用知识解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网