题目内容

4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1、F2,P为双曲线上一点,且满足|OP|=$\sqrt{11}$a,|F1F2|是|PF1|与|PF2|的等比中项,则该双曲线的离心率为(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

分析 通过等比数列双曲线的定义,余弦定理推出:|OP|2=2a2+3c2.利用|OP|=$\sqrt{11}$a,求出双曲线的离心率的值.

解答 解:由题意,|PF1|、|F1F2|、|PF2|成等比数列可知,|F1F2|2=|PF1||PF2|,
即4c2=|PF1||PF2|,
由双曲线的定义可知|PF1|-|PF2|=2a,即|PF1|2+|PF2|2-2|PF1||PF2|=4a2
可得|PF1|2+|PF2|2-8c2=4a2…①
设∠POF1=θ,则∠POF2=π-θ,
由余弦定理可得:|PF2|2=c2+|OP|2-2|OF2||OP|cos(π-θ),|PF1|2=c2+|OP|2-2|OF1||OP|cosθ,
|PF2|2+PF1|2=2c2+2|OP|2,…②,
由①②化简得:|OP|2=2a2+3c2
因为|OP|=$\sqrt{11}$a,所以2a2+3c2=11a2
所以e=$\frac{c}{a}$=$\sqrt{3}$.
故选:D.

点评 本题考查双曲线的定义,余弦定理以及等比数列的应用,是有难度的综合问题,考查分析问题解决问题的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网