题目内容
已知数列{bn}的前n项和为Sn,bn=
,求Sn.
| n+1 |
| (n+2)24n2 |
考点:数列的求和
专题:点列、递归数列与数学归纳法
分析:利用裂项法,可得bn=
=
(
-
),从而可得数列{bn}的前n项和为Sn.
| n+1 |
| (n+2)24n2 |
| 1 |
| 16 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
解答:
解:∵bn=
=
(
-
),
∴Sn=
[(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(
+
-
-
)
=
-
.
| n+1 |
| (n+2)24n2 |
| 1 |
| 16 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
∴Sn=
| 1 |
| 16 |
| 1 |
| 12 |
| 1 |
| 32 |
| 1 |
| 22 |
| 1 |
| 42 |
| 1 |
| (n-1)2 |
| 1 |
| (n+1)2 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
=
| 1 |
| 16 |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| (n+1)2 |
| 1 |
| (n+2)2 |
=
| 5 |
| 64 |
| 2n2+6n+5 |
| 16(n+1)2(n+2)2 |
点评:本题考查数列的求和,突出考查裂项法的应用,求得bn=
=
(
-
)是关键,也是难点,考查转化思想与运算求解能力,属于难题.
| n+1 |
| (n+2)24n2 |
| 1 |
| 16 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
练习册系列答案
相关题目