题目内容

10.已知椭圆的离心率e=$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1、F2,定点,P(2,$\sqrt{3}$),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M、F2N的倾斜角分别为α、β且α+β=π,求证:直线l过定点,并求该定点的坐标.

分析 (Ⅰ)由椭圆的离心率求得a=$\sqrt{2}$c,且丨F1F2丨=丨PF2丨,利用勾股定理即可求得c及a和b的值;
(Ⅱ)将直线代入椭圆方程,利用直线的斜率公式求得${k}_{{F}_{1}M}$=$\frac{k{x}_{1}+m}{{x}_{1}-1}$,${k}_{{F}_{1}N}$=$\frac{k{x}_{2}+m}{{x}_{2}-1}$,由${k}_{{F}_{1}M}$+${k}_{{F}_{1}N}$=0,结合韦达定理,即可求得m=-2k.则直线MN过定点,该定点的坐标为(2,0).

解答 解:(Ⅰ)由椭圆C的离心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$,则a=$\sqrt{2}$c,
椭圆C的左、右焦点分别为F1(-c,0),F2(c,0),又点F2在线段PF1的中垂线上
∴丨F1F2丨=丨PF2丨,∴(2c)2=($\sqrt{3}$)2+(2-c)2,解得:c=1,
则a=$\sqrt{2}$,b2=a2-c2=1,
∴椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(Ⅱ)证明:由题意,知直线MN存在斜率,设其方程为y=kx+m
由$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=kx+m}\end{array}\right.$消去y,得(2k2+1)x2+4kmx+2m2-2=0.
设M(x1,y1)、N(x2,y2),则x1+x2=-$\frac{4km}{2{k}^{2}+1}$,x1x2=$\frac{2{m}^{2}-2}{2{k}^{2}+1}$,
且${k}_{{F}_{1}M}$=$\frac{k{x}_{1}+m}{{x}_{1}-1}$,${k}_{{F}_{1}N}$=$\frac{k{x}_{2}+m}{{x}_{2}-1}$
由已知α+β=π,得${k}_{{F}_{1}M}$+${k}_{{F}_{1}N}$=0,即$\frac{k{x}_{1}+m}{{x}_{1}-1}$+$\frac{k{x}_{2}+m}{{x}_{2}-1}$=0,
化简,得2kx1x2+(m-k)(x1+x2)-2m=0,
∴2k×$\frac{2{m}^{2}-2}{2{k}^{2}+1}$-(m-k)($\frac{4km}{2{k}^{2}+1}$)-2m.整理得m=-2k.
∴直线MN的方程为y=k(x-2),
∴直线MN过定点,该定点的坐标为(2,0).

点评 本题考查椭圆的标准方程及离心率公式,考查直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网