题目内容

7.如图,在△ABC中,点M是BC中点,点N在AC上,且AN=2NC,AM交BN于点P,则AP:PM的值为(  )
A.$\frac{3}{2}$B.2C.4D.$\frac{5}{4}$

分析 M为BC中点,从而有$\overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,这便可得到$\overrightarrow{AP}=\frac{λ}{2}\overrightarrow{AB}+\frac{λ}{2}\overrightarrow{AC}$,而B,P,N三点共线,并且AN=2NC,从而有$\overrightarrow{AP}=k\overrightarrow{AB}+\frac{2}{3}(1-k)\overrightarrow{AC}$,从而可得到$\left\{\begin{array}{l}{\frac{λ}{2}=k}\\{\frac{λ}{2}=\frac{2}{3}(1-k)}\end{array}\right.$,解出λ即可求出AP:PM的值.

解答 解:∵$\overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,$\overrightarrow{AP}=λ\overrightarrow{AM}$;
∴$\overrightarrow{AP}=\frac{λ}{2}\overrightarrow{AB}+\frac{λ}{2}\overrightarrow{AC}$;
∵B,P,N三点共线;
∴$\overrightarrow{AP}=k\overrightarrow{AB}+(1-k)\overrightarrow{AN}$=$k\overrightarrow{AB}+\frac{2}{3}(1-k)\overrightarrow{AC}$;
∴$\left\{\begin{array}{l}{\frac{λ}{2}=k}\\{\frac{λ}{2}=\frac{2}{3}(1-k)}\end{array}\right.$;
解得$λ=\frac{4}{5}$;
∴AP:PM=4:1;
即AP:PM的值为4.
故选:C.

点评 考查向量加法的平行四边形法则,共线向量基本定理,以及平面向量基本定理,向量数乘的几何意义.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网