题目内容

已知f(x)=
x2-4x+3,  x≤0
-x2-2x+3,  x>0
不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是(  )
A、(-2,0)
B、(-∞,0)
C、(0,2)
D、(-∞,-2)
考点:分段函数的应用,函数恒成立问题
专题:函数的性质及应用
分析:由分段函数知,分两部分讨论函数的单调性,从而可得f(x)在R上是减函数,化恒成立问题为x+a<2a-x在[a,a+1]上恒成立;从而化为最值问题即可.
解答: 解:①当x≤0时,f(x)=x2-4x+3=(x-2)2-1,
故f(x)在(-∞,0]上是减函数;
②当x>0时,f(x)=-x2-2x+3=-(x+1)2+4,
故f(x)在(0,+∞)上是减函数;
又∵(0-2)2-1=-(0+1)2+4,
∴f(x)在R上是减函数,
∴不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立可化为
x+a<2a-x在[a,a+1]上恒成立;
即2x<a在[a,a+1]上恒成立,
故2(a+1)<a,
解得,a<-2;
故选D.
点评:本题考查了分段函数的性质应用及分段函数的单调性的判断,同时考查了恒成立问题化为最值问题,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网