题目内容
在等比数列{an}中,Sn=48,S2n=60,则S3n等于( )
| A、26 | B、27 | C、62 | D、63 |
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:由数列{an}是等比数列,可得其前n项和Sn,S2n-Sn,S3n-S2n也成等比数列.即可得出.
解答:
解:∵数列{an}是等比数列,∴其前n项和Sn,S2n-Sn,S3n-S2n也成等比数列.
∴(60-48)2=48×(S3n-60),解得S3n=63.
故选:D.
∴(60-48)2=48×(S3n-60),解得S3n=63.
故选:D.
点评:熟练掌握等比数列的性质:“其前n项和Sn,S2n-Sn,S3n-S2n也成等比数列”是解题的关键.
练习册系列答案
相关题目
函数f(x)在x=x0处导数存在,若命题p:f′(x0)=0;命题q:x=x0是f(x)的极值点,则p是q的( )
| A、充要条件 |
| B、充分不必要的条件 |
| C、必要不充分的条件 |
| D、既不充分也不必要的条件 |
点A(1,0),B(0,1),点C在第二象限内,已知∠AOC=
,|
|=2,且
=λ
+μ
,则λ,μ的值分别是( )
| 5π |
| 6 |
| OC |
| OC |
| OA |
| OB |
A、-1,
| ||
B、-
| ||
C、1,-
| ||
D、
|
函数f(x)=x3-3x-3有零点的区间是( )
| A、(-1,0) |
| B、(0,1) |
| C、(1,2) |
| D、(2,3) |
方程mx2-(2m+1)x+m=0有两个不相等的实数解,则m的取值范围是( )
A、m>-
| ||
| B、m>0 | ||
C、-
| ||
D、m<0或m>
|
函数y=log
(x2-6x+10)在区间[1,2]上的最大值是( )
| 1 |
| 5 |
| A、0 | ||
B、log
| ||
C、log
| ||
| D、1 |