题目内容

已知an=3n-(-2)n,求证:
1
a1
+
1
a2
+…+
1
an
1
2
考点:数列的求和
专题:等差数列与等比数列
分析:由an=3n-(-2)n,得
1
a2
=
1
a1
=
1
5
,分n为奇数和n为偶数两种情况,利用放缩法能证明
1
a1
+
1
a2
+…+
1
an
1
2
解答: 证明:∵an=3n-(-2)n
∴a1=3+2=5,a2=9-4=5,
1
a2
=
1
a1
=
1
5

当n为奇数时,
1
an
=
1
3n+2n
1
an-2
=
1
3n-2+2n-2

1
an
1
an-2
=
3n-2+2n-2
3n+2n
1
5

1
an-1
=
1
3n-1-2n-1
1
an-3
=
1
3n-3-2n-3

1
an-1
1
an-3
=
3n-3-2n-3
3n-1-2n-1
1
5

1
a1
+
1
a2
+…+
1
an

1
5
×[
1-(
1
5
)
n+1
2
1-
1
5
]
+
1
5
×[
1-(
1
5
)
n-1
2
1-
1
5
]
1
2

当n为偶数时,
1
an
=
1
3n-2n
1
an-2
=
1
3n-2-2n-2

1
an
1
an-2
=
3n-2-2n-2
3n-2n
1
5

1
an-1
=
1
3n-1+2n-1
1
an-3
=
1
3n-3+2n-3

1
an-1
1
an-3
=
3n-3+2n-3
3n-1+2n-1
1
5

∴∴
1
a1
+
1
a2
+…+
1
an

1
5
×[
1-(
1
5
)
n+1
2
1-
1
5
]
+
1
5
×[
1-(
1
5
)
n-1
2
1-
1
5
]
1
2

综上,
1
a1
+
1
a2
+…+
1
an
1
2
点评:本题考查不等式的证明,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网