题目内容
已知an=3n-(-2)n,求证:
+
+…+
<
.
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
考点:数列的求和
专题:等差数列与等比数列
分析:由an=3n-(-2)n,得
=
=
,分n为奇数和n为偶数两种情况,利用放缩法能证明
+
+…+
<
.
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| 5 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
解答:
证明:∵an=3n-(-2)n,
∴a1=3+2=5,a2=9-4=5,
=
=
,
当n为奇数时,
=
,
=
,
=
<
,
=
,
=
,
=
<
,
∴
+
+…+
<
×[
]+
×[
]<
.
当n为偶数时,
=
,
=
,
=
<
,
=
,
=
,
=
<
,
∴∴
+
+…+
<
×[
]+
×[
]<
.
综上,
+
+…+
<
.
∴a1=3+2=5,a2=9-4=5,
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| 5 |
当n为奇数时,
| 1 |
| an |
| 1 |
| 3n+2n |
| 1 |
| an-2 |
| 1 |
| 3n-2+2n-2 |
| ||
|
| 3n-2+2n-2 |
| 3n+2n |
| 1 |
| 5 |
| 1 |
| an-1 |
| 1 |
| 3n-1-2n-1 |
| 1 |
| an-3 |
| 1 |
| 3n-3-2n-3 |
| ||
|
| 3n-3-2n-3 |
| 3n-1-2n-1 |
| 1 |
| 5 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
<
| 1 |
| 5 |
1-(
| ||||
1-
|
| 1 |
| 5 |
1-(
| ||||
1-
|
| 1 |
| 2 |
当n为偶数时,
| 1 |
| an |
| 1 |
| 3n-2n |
| 1 |
| an-2 |
| 1 |
| 3n-2-2n-2 |
| ||
|
| 3n-2-2n-2 |
| 3n-2n |
| 1 |
| 5 |
| 1 |
| an-1 |
| 1 |
| 3n-1+2n-1 |
| 1 |
| an-3 |
| 1 |
| 3n-3+2n-3 |
| ||
|
| 3n-3+2n-3 |
| 3n-1+2n-1 |
| 1 |
| 5 |
∴∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
<
| 1 |
| 5 |
1-(
| ||||
1-
|
| 1 |
| 5 |
1-(
| ||||
1-
|
| 1 |
| 2 |
综上,
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 2 |
点评:本题考查不等式的证明,解题时要认真审题,注意放缩法的合理运用.
练习册系列答案
相关题目
(
-
)10的展开式中含x的负整数指数幂的项数是( )
| x |
| 1 |
| 3x |
| A、0 | B、2 | C、4 | D、6 |