题目内容
已知a1=2,an=2-
.
(1)求证bn=
为等差数列;
(2)求cn=
的前n项和Tn.
| 1 |
| an-1 |
(1)求证bn=
| 1 |
| an-1 |
(2)求cn=
| 1 |
| bn•bn+1 |
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件推导出an-1=1-
=
,从而得到
-
=1,由此能证明数列{bn}是以1为首项,1为公差的等差数列.
(2)cn=
=
=
-
,由此利用裂项求和法能求出cn=
的前n项和Tn.
| 1 |
| an-1 |
| an-1-1 |
| an-1 |
| 1 |
| an-1 |
| 1 |
| an-1-1 |
(2)cn=
| 1 |
| bn•bn+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n-1 |
| 1 |
| bn•bn-1 |
解答:
(1)证明:∵a1=2,an=2-
,
∴an-1=1-
=
,
∴
=
=
=1+
,
∴
-
=1,
∵
=1,bn=
,
∴数列{bn}是以1为首项,1为公差的等差数列.
(2)解:∵数列{bn}是以1为首项,1为公差的等差数列,
∴bn=1+(n-1)×1=n,
∴cn=
=
=
-
,
∴Tn=1-
+
-
+…+
-
=1-
=
.
| 1 |
| an-1 |
∴an-1=1-
| 1 |
| an-1 |
| an-1-1 |
| an-1 |
∴
| 1 |
| an-1 |
| an-1 |
| an-1-1 |
| an-1-1+1 |
| an-1-1 |
| 1 |
| an-1-1 |
∴
| 1 |
| an-1 |
| 1 |
| an-1-1 |
∵
| 1 |
| a1-1 |
| 1 |
| an-1 |
∴数列{bn}是以1为首项,1为公差的等差数列.
(2)解:∵数列{bn}是以1为首项,1为公差的等差数列,
∴bn=1+(n-1)×1=n,
∴cn=
| 1 |
| bn•bn+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n-1 |
∴Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
=
| n |
| n+1 |
点评:本题考查等差数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
2sin105°cos105°的值为( )
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|