题目内容

4.解关于x的不等式:ax2-x+1<0.

分析 利用一元二次不等式的性质根据a的取值进行分类讨论,由此能求出原不等式的解集.

解答 解:∵ax2-x+1<0,
∴当a=0时,-x+1<0,解得x>1,原不等式解集为{x|x>1}.
当a<0时,-ax2+x-1>0,
当△=1-4a=0,即a=$\frac{1}{4}$时,不满足a<0,故无解;
当△=1-4a>0时,a<$\frac{1}{4}$,解方程-ax2+x-1=0,得x=$\frac{-1±\sqrt{1-4a}}{-2a}$,
∴原不等式的解集为:{x|x<$\frac{1+\sqrt{1-4a}}{2a}$};
当△=1-4a<0,即a>$\frac{1}{4}$,不满足a<0,故无解;
当a>0时,ax2-x+1<0
当△=1-4a=0,即a=$\frac{1}{4}$时,原不等式的解集为{x|x≠$\frac{1}{2a}$};
当△=1-4a>0时,0<a<$\frac{1}{4}$,解方程ax2-x+1=0,得x=$\frac{1±\sqrt{1-4a}}{2a}$,
∴原不等式的解集为:{x|$\frac{1-\sqrt{1-4a}}{2a}$<x<$\frac{1+\sqrt{1-4a}}{2a}$};
当△=1-4a<0,即a>$\frac{1}{4}$,原不等式的解集为R.

点评 本题考查一元二次不等式的解法,是中档题,解题时要认真审题,注意分类讨论思想的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网