题目内容

19.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2016(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

分析 根据题中已知条件先找出函数fn(x)的规律,便可发现fn(x)的循环周期为4,从而求出f2016(x)的值.

解答 解:f0(x)=sinx
f1(x)=f0′(x)=cosx
f2(x)=f1′(x)=-sinx
f3(x)=f2′(x)=-cosx
f4(x)=f3′(x)=sinx

由上面可以看出,以4为周期进行循环
2016÷4=504,
所以f2016(x)=f0(x)=sinx.
故选A.

点评 本题考查了导数的运算,根据导数求出fn(x)的表达式,由已知导函数求原函数解析式,逆向求解的方法,本题属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网