题目内容
8.正三角形ABC的两个顶点A,B在抛物线x2=2py(p>0)上,另一个顶点C是此抛物线焦点,则满足条件的三角形ABC的个数为( )| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 由题意可知:x2=2py(P>0)的焦点F(0,$\frac{p}{2}$),则两个边的斜率k=±tan60°=±$\sqrt{3}$,其方程为:y=±$\sqrt{3}$x+$\frac{p}{2}$,每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形.满足条件的三角形ABC的个数为2,
解答 解:由抛物线x2=2py(P>0)的焦点F(0,$\frac{p}{2}$),
等边三角形的一个顶点位于抛物线x2=2py(P>0)的焦点,另外两个顶点在抛物线上,则等边三角形关于x轴轴对称
两个边的斜率k=±tan60°=±$\sqrt{3}$,其方程为:y=±$\sqrt{3}$x+$\frac{p}{2}$,
每条直线与抛物线均有两个交点,焦点两侧的两交点连接,分别构成一个等边三角形.
满足条件的三角形ABC的个数为2,
故选C.![]()
点评 本题主要考查了抛物线的简单性质.主要是利用抛物线和正三角形的对称性,考查数形结合思想,属于基础题.
练习册系列答案
相关题目
19.某班5名学生的数学和物理成绩如下表:
(1)求物理成绩y对数学成绩x的回归直线方程;
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| A | B | C | D | E | |
| 数学成绩(x) | 88 | 76 | 73 | 66 | 63 |
| 物理成绩(y) | 78 | 65 | 71 | 64 | 61 |
(2)一名学生的数学成绩是96,试预测他的物理成绩.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
16.现有编号为A,B,C,D的四本书,将这4本书平均分给甲、乙两位同学,则A,B两本书不被同一位同学分到的概率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
3.已知抛物线y2=2px(p>0)的焦点为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,且其准线被该双曲线截得的弦长是$\frac{2}{3}$b,则该双曲线的离心率为( )
| A. | $\frac{13}{9}$ | B. | $\frac{10}{9}$ | C. | $\frac{\sqrt{13}}{3}$ | D. | $\frac{\sqrt{10}}{3}$ |
13.设集合A={x|-2≤x≤4},B={x|x2-3x>0},则A∩B=( )
| A. | {x|-2≤x<0或3<x≤4} | B. | {x|-2≤x≤0或3≤x≤4} | C. | {x|-2<x≤4} | D. | {x|0<x<3} |
20.已知集合A={x|log2(4-x)<1},B={x|3x-1≤9},则A∩B=( )
| A. | (2,3) | B. | (2,4) | C. | (2,3] | D. | [2,3] |
17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{12}=1({a>0})$,以原点为圆心,双曲线的实轴长为半径长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形的ABCD的面积为$2\sqrt{3}a$,则a的值为( )
| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$或$2\sqrt{2}$ | D. | 2 |