题目内容
11.在游乐场,有一种游戏是向一个画满均匀方格的桌面上投硬币,若硬币恰落在任何一个方格内不与方格线重叠,即可获奖.已知硬币的直径为2,若游客获奖的概率不超过$\frac{1}{9}$,则方格边长最长为(单位:cm)( )| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 由题意知本题是一个几何概型,概率等于对应面积之比,根据题意算出试验包含的总面积和符合条件的面积,求比值即可.
解答 解:设小方格边长为acm,
∵硬币的直径为2cm,显然a≥2;
使硬币与小方格的四边不相交,则
这时硬币所在的位置可以是以方格中心为中心点,以a-2为边长的方格;
且与小方格的四边不相交的概率不超过$\frac{1}{9}$,
即p=$\frac{{(a-2)}^{2}}{{a}^{2}}$≤$\frac{1}{9}$,
解出$\frac{3}{2}$≤a≤3,
即a的取值范围为[2,3]满足条件;
∴方格边长最长为3.
故选:A.
点评 本题考查了几何概型和面积的计算问题,是基础题目.
练习册系列答案
相关题目
16.若x,y是正数,且$\frac{1}{x}$+$\frac{4}{y}$=1,则xy有( )
| A. | 最小值16 | B. | 最小值$\frac{1}{16}$ | C. | 最大值16 | D. | 最大值$\frac{1}{16}$ |
20.
甲、乙速度v与时间t的关系如图,a(b)是t=b时的加速度,S(b)是从t=0到t=b的路程,则a甲(b)与a乙(b),S甲(b)与S乙(b)的大小关系是( )
| A. | a甲(b)>a乙(b),S甲(b)>S乙(b) | B. | a甲(b)<a乙(b),S甲(b)<S乙(b) | ||
| C. | a甲(b)<a乙(b),S甲(b)>S乙(b) | D. | a甲(b)<a乙(b),S甲(b)<S乙(b) |