题目内容
1.设不等式4x-m(4x+2x+1)≥0对于任意的x∈[0,1]恒成立,则实数m的取值范围是(-∞,$\frac{1}{3}$].分析 不等式4x-m(4x+2x+1)≥0对于任意的x∈[0,1]恒成立⇒m≤$\frac{{4}^{x}}{{4}^{x}{+2}^{x}+1}$=$\frac{1}{{2}^{-2x}{+2}^{-x}+1}$(0≤x≤1)恒成立,构造函数f(x)=2-2x+2-x+1,利用配方法与指数函数单调性可求得f(x)max=3,从而可得实数m的取值范围.
解答 解:∵4x-m(4x+2x+1)≥0对于任意的x∈[0,1]恒成立,
∴m≤$\frac{{4}^{x}}{{4}^{x}{+2}^{x}+1}$=$\frac{1}{{2}^{-2x}{+2}^{-x}+1}$(0≤x≤1)恒成立,
令f(x)=2-2x+2-x+1=(2-x+$\frac{1}{2}$)2+$\frac{3}{4}$,
∵x∈[0,1],∴2-x∈[$\frac{1}{2}$,1],f(x)在区间[0,1]上单调递减,
∴f(x)max=f(0)=3,
∴m≤$\frac{1}{3}$,
故答案为:(-∞,$\frac{1}{3}$].
点评 本题考查函数恒成立问题,分离参数m是关键,考查配方法与指数函数单调性的应用,突出考查等价转化思想与运算求解能力,属于中档题.
练习册系列答案
相关题目
9.某医院一天内派医生下乡医疗,派出医生数及概率如下:
求(1)派出医生为3人的概率;
(2)派出医生至多2人的概率.
(3)派出医生至少2 人的概率.
| 医生人数 | 0 | 1 | 2 | 3 | 4 | 5人以上 |
| 概率 | 0.1 | 0.16 | 0.2 | x | 0.2 | 0.04 |
(2)派出医生至多2人的概率.
(3)派出医生至少2 人的概率.
6.偶函数f(x)(x∈R)满足:f(-5)=f(2),且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式x•f(x)<0的解集为( )
| A. | (-∞,-5)∪(5,+∞) | B. | (-5,-2)∪(2,5) | C. | (-∞,-5)∪(-2,0) | D. | (-∞,-5)∪(-2,0)∪(2,5) |
10.从1,2,3,4,5,6这6个数字中,任取2个数字相加,其和为奇数的概率为( )
| A. | $\frac{2}{5}$ | B. | $\frac{1}{2}$ | C. | $\frac{8}{15}$ | D. | $\frac{3}{5}$ |