题目内容

如图,已知四棱柱ABCD-A1B1C1D1的棱长都为a,底面ABCD是菱形,且∠BAD=60°,侧棱A1A⊥平面ABCD,F为棱B1B的中点,M为线段AC1的中点.
(Ⅰ)求证:平面AFC1⊥平面A1C1AC;
(Ⅱ)求三棱锥C1-ABF的体积.
考点:棱柱、棱锥、棱台的体积,平面与平面垂直的判定
专题:空间位置关系与距离
分析:(1)连结BD,易证BD⊥平面ACC1A1,而NA∥BD,从而有NA⊥平面ACC1A1,由面面垂直的判定定理即可证得平面AFC1⊥平面ACC1A1
(2)三棱锥C1-ABF的体积,直接求解即可.
解答: (1)证明:(如上图)连结BD,由直四棱柱ABCD-A1B1C1D1,可知:A1A⊥平面ABCD,
又∵BD?平面ABCD,
∴A1A⊥BD.
∵四边形ABCD为菱形,
∴AC⊥BD.
又∵AC∩A1A=A,AC、A1A?平面ACC1A1
∴BD⊥平面ACC1A1.…(7分)
而NA∥BD,
∴NA⊥平面ACC1A1
又∵NA?平面AFC1
∴平面AFC1⊥平面ACC1A1                                           …(9分)
(2)解:∵∠DAB=60°,∴C到AB的距离为:asin60°=
3
2
a
,就是C1到平面ABF的距离,AD=AA1=a,
∴三棱锥A1-AC1F的体积:
1
3
×
1
2
AB•BF•
3
2
a
=
1
3
×
1
2
×a×
1
2
3
2
a
=
3
24
a3
…(12分)
点评:本题考查直线与平面平行的判定,考查平面与平面垂直的判断及棱锥的体积,考查推理分析与运算能力,考查等价转化思想与数形结合思想的综合运用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网