题目内容

已知f(x)=2x3-6x2-18x,求f(x)的单调区间.
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:先求出函数的导数,令导函数为0,解方程,从而求出函数f(x)的单调区间.
解答: 解:∵f(x)=2x3-6x2-18x,
∴f′(x)=6x2-12x-18,
令f′(x)=0,解得:x=-1,x=3,
∴f(x)在(-∞,-1),(3,+∞)递增,在(-1,3)上递减.
点评:本题考察了函数的单调性,导数的应用,是一道基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网