题目内容
设{an}是集合{3p+3q+3r|0≤p<q<r,且p,q,r∈N*}中所有的数从小到大排列成的数列,已知ak=2511,则k= .
考点:计数原理的应用
专题:计算题,排列组合
分析:ak=2511,可得p=4,q-p=1,r-p=3,从而q=5,r=7,用列举法求解即可.
解答:
解:0≤p<q<r,且p,q,r∈N
an=3p+3q+3r=3p(1+3q-p+3r-p),
ak=2511,∴p=4,q-p=1,r-p=3,
∴q=5,r=7,
∴(p,q,r)=(4,5,7)(4,5,7)(3,5,7)(3,4,7)(2,5,7)(2,4,7)(2,3,7)(1,5,7)(1,4,7)(1,3,7)(1,2,7)(0,5,7)(0,4,7)(0,3,7)(0,2,7)(0,1,7)(4,5,6)(3,5,6)(3,4,6)(2,5,6)(2,4,6)(2,3,6)(1,5,6)(1,4,6)(1,3,6)(1,2,6)(0,5,6)(0,4,6)(0,3,6)(0,2,6)(0,1,6)(3,4,5)(2,4,5)(2,3,5)(1,4,5)(1,3,5)(1,2,5)(0,4,5)(0,3,5)(0,2,5)(0,1,5)(2,3,4)(1,3,4)(1,2,4)(0,3,4)(0,2,4)(0,1,4)(1,2,3)(0,2,3)(0,1,3)(0,1,2)
∴(5+4+3+2+1)×2+(4+3+2+1)+(3+2+1)+(2+1)+1=50,
故答案为:50
an=3p+3q+3r=3p(1+3q-p+3r-p),
ak=2511,∴p=4,q-p=1,r-p=3,
∴q=5,r=7,
∴(p,q,r)=(4,5,7)(4,5,7)(3,5,7)(3,4,7)(2,5,7)(2,4,7)(2,3,7)(1,5,7)(1,4,7)(1,3,7)(1,2,7)(0,5,7)(0,4,7)(0,3,7)(0,2,7)(0,1,7)(4,5,6)(3,5,6)(3,4,6)(2,5,6)(2,4,6)(2,3,6)(1,5,6)(1,4,6)(1,3,6)(1,2,6)(0,5,6)(0,4,6)(0,3,6)(0,2,6)(0,1,6)(3,4,5)(2,4,5)(2,3,5)(1,4,5)(1,3,5)(1,2,5)(0,4,5)(0,3,5)(0,2,5)(0,1,5)(2,3,4)(1,3,4)(1,2,4)(0,3,4)(0,2,4)(0,1,4)(1,2,3)(0,2,3)(0,1,3)(0,1,2)
∴(5+4+3+2+1)×2+(4+3+2+1)+(3+2+1)+(2+1)+1=50,
故答案为:50
点评:本题考查一个数是该数列的第几项的判断,解题时要认真审题,注意总结规律.
练习册系列答案
相关题目
已知函数f(x)=
,则f(x)为( )
|
| A、奇函数 |
| B、偶函数 |
| C、既是奇函数又是偶函数 |
| D、既不是奇函数又不是偶函数 |
集合A={x|y=log2(1-x)},B={x|x2>0},则A∩B=( )
| A、(0,1) |
| B、(0,1] |
| C、(-∞,1) |
| D、(-∞,0)∪(0,1) |