题目内容

已知关于x的不等式
x+a
≥x的解集区间长度为4|a|,则实数a=
 
考点:其他不等式的解法
专题:不等式的解法及应用
分析:由题意得x2-x-a≤0,设方程x2-x-a=0的两个根为:x1,x2,结合|x1-x2|=4|a|,得到16a2-4a-1=0,解出a的值即可.
解答: 解:由
x+a
≥x,得:x2-x-a≤0,
设方程x2-x-a=0的两个根为:x1,x2
∴x1+x2=1,1x1•x2=-a,
∵|x1-x2|=4|a|,
(x1+x2)2-4x1 x2=16a2
∴16a2-4a-1=0,解得:a=
5
8

故答案为:
5
8
点评:本题考查了解不等式问题,考查了一元二次方程的根与系数的关系,是一道中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网