题目内容

1.如图,在半径为40cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中A,B在直径上,点C,D在圆周上、
(1)设AD=x,将矩形ABCD的面积y表示成x的函数,并写出其定义域;
(2)怎样截取,才能使矩形材料ABCD的面积最大?并求出最大面积.

分析 (1)OA=2$\sqrt{4{0}^{2}-{x}^{2}}$=2$\sqrt{1600-{x}^{2}}$,可得y=f(x)=2x$\sqrt{1600-{x}^{2}}$,x∈(0,40).
(2)平方利用基本不等式的性质即可得出.

解答 解:(1)AB=2OA=2$\sqrt{4{0}^{2}-{x}^{2}}$=2$\sqrt{1600-{x}^{2}}$,
∴y=f(x)=2x$\sqrt{1600-{x}^{2}}$,x∈(0,40).
(2)y2=4x2(1600-x2)≤4×$(\frac{{x}^{2}+1600-{x}^{2}}{2})^{2}$=16002,即y≤1600,当且仅当x=20$\sqrt{2}$时取等号.
∴截取AD=20$\sqrt{2}$时,才能使矩形材料ABCD的面积最大,最大面积为1600.

点评 本题考查了函数的性质、矩形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网