题目内容

1.《九章算术》是我国古代一部重要的数学著作,书中给出了如下问题:“今有良马与驽马发长安,至齐,齐去长安一千一百二十五里.良马初日行一百零三里,日增一十三里.驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢?”其大意为:“现有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是1125里.良马第一天行103里,之后每天比前一天多行13里.驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇?”在这个问题中两马从出发到相遇的天数为9.

分析 利用等差数列的求和公式与不等式的解法即可得出.

解答 解:由题意知,良马每日行的距离成等差数列,
记为{an},其中a1=103,d=13;
驽马每日行的距离成等差数列,
记为{bn},其中b1=97,d=-0.5;
设第m天相逢,则a1+a2+…+am+b1+b2+…+bm
=103m+$\frac{m(m-1)}{2}$×13+97m+$\frac{m(m-1)}{2}$×(-0.5)
=200m+$\frac{m(m-1)}{2}$×12.5≥2×1125,
化为m2+31m-360≥0,
解得m$≥\frac{-31+\sqrt{2401}}{2}$,取m=9.
故答案为:9

点评 本题考查了等差数列的通项公式与求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网