ÌâÄ¿ÄÚÈÝ
10£®¡°¹²Ïíµ¥³µ¡±µÄ³öÏÖ£¬ÎªÎÒÃÇÌṩÁËÒ»ÖÖÐÂÐ͵Ľ»Í¨·½Ê½£®Ä³»ú¹¹ÎªÁ˵÷²éÈËÃǶԴËÖÖ½»Í¨·½Ê½µÄÂúÒâ¶È£¬´Ó½»Í¨Óµ¶Â²»ÑÏÖØµÄA³ÇÊкͽ»Í¨Óµ¶ÂÑÏÖØµÄB³ÇÊзֱðËæ»úµ÷²éÁË20¸öÓû§£¬µÃµ½ÁËÒ»¸öÓû§ÂúÒâ¶ÈÆÀ·ÖµÄÑù±¾£¬²¢»æÖƳö¾¥Ò¶Í¼Èçͼ£º£¨¢ñ£©¸ù¾Ý¾¥Ò¶Í¼£¬±È½ÏÁ½³ÇÊÐÂúÒâ¶ÈÆÀ·ÖµÄƽ¾ùÖµºÍ·½²î£¨²»ÒªÇó¼ÆËã³ö¾ßÌåÖµ£¬µÃ³ö½áÂÛ¼´¿É£©£»
£¨¢ò£©ÈôµÃ·Ö²»µÍÓÚ80·Ö£¬ÔòÈÏΪ¸ÃÓû§¶Ô´ËÖÖ½»Í¨·½Ê½¡°ÈϿɡ±£¬·ñÔòÈÏΪ¸ÃÓû§¶Ô´ËÖÖ½»Í¨·½Ê½¡°²»ÈϿɡ±£¬Çë¸ù¾Ý´ËÑù±¾Íê³ÉÏÂÁÐ2¡Á2ÁÐÁª±í£¬²¢¾Ý´ËÑù±¾·ÖÎöÄãÊÇ·ñÓÐ95%µÄ°ÑÎÕÈÏΪ³ÇÊÐÓµ¶ÂÓëÈϿɹ²Ïíµ¥³µÓйأ®
| ÈÏ¿É | ²»ÈÏ¿É | ºÏ¼Æ | |
| A³ÇÊÐ | |||
| B³ÇÊÐ | |||
| ºÏ¼Æ |
| P£¨¦¶2¡Ýk£© | 0.05 | 0.010 |
| k | 3.841 | 6.635 |
£¨¢ó£©ÔÚAºÍBÁ½¸ö³ÇÊÐÂúÒâ¶ÈÔÚ90·ÖÒÔÉϵÄÓû§ÖÐÈÎÈ¡2»§£¬ÇóÀ´×Ô²»Í¬³ÇÊеĸÅÂÊ£®
·ÖÎö £¨¢ñ£©¸ù¾Ý¾¥Ò¶Í¼£¬¼´¿É±È½ÏÁ½³ÇÊÐÂúÒâ¶ÈÆÀ·ÖµÄƽ¾ùÖµºÍ·½²î£»
£¨¢ò£©Çó³ö¦¶2£¬ÓëÁÙ½çÖµ±È½Ï£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ó£©ÀûÓÃÁоٷ¨È·¶¨»ù±¾Ê¼þ£¬¼´¿ÉÇó³öÀ´×Ô²»Í¬³ÇÊеĸÅÂÊ£®£®
½â´ð ½â£º£¨¢ñ£©A³ÇÊÐÆÀ·ÖµÄƽ¾ùֵСÓÚB³ÇÊÐÆÀ·ÖµÄƽ¾ùÖµ£» £¨2·Ö£©
A³ÇÊÐÆÀ·ÖµÄ·½²î´óÓÚB³ÇÊÐÆÀ·ÖµÄ·½²î£» £¨4·Ö£©
£¨¢ò£©2¡Á2ÁÐÁª±í
| ÈÏ¿É | ²»ÈÏ¿É | ºÏ¼Æ | |
| A³ÇÊÐ | 5 | 15 | 20 |
| B³ÇÊÐ | 10 | 10 | 20 |
| ºÏ¼Æ | 15 | 25 | 40 |
ËùÒÔÈÏΪÓÐ95%µÄ°ÑÎÕÈÏΪ³ÇÊÐÓµ¶ÂÓëÈϿɹ²Ïíµ¥³µÎÞ¹Ø £¨8·Ö£©
£¨¢ó£© ÉèʼþM=¡°À´×Ô²»Í¬³ÇÊС±£¬ÉèA³ÇÊеÄ2»§¼ÇΪa£¬b£¬B³ÇÊеÄ4»§¼ÇΪc£¬d£¬e£¬f£¬ÆäÖдÓÖÐÈÎÈ¡2»§µÄ»ù±¾Ê¼þ·Ö±ðΪ£¨a£¬b£©£¬£¨a£¬c£©£¬£¨a£¬d£©£¬£¨a£¬e£©£¬£¨a£¬f£©£¬£¨b£¬c£©£¬£¨b£¬d£©£¬£¨b£¬e£©£¬£¨b£¬f£©£¬£¨c£¬d£©£¬£¨c£¬e£©£¬£¨c£¬f£©£¬£¨d£¬e£©£¬£¨d£¬f£©£¬£¨e£¬f£©£®¹²15ÖÖ £¨10·Ö£©
ÆäÖÐʼþM¡°À´×Ô²»Í¬³ÇÊС±°üº¬µÄ»ù±¾Ê¼þΪ£¬£¨a£¬c£©£¬£¨a£¬d£©£¬£¨a£¬e£©£¬£¨a£¬f£©£¬£¨b£¬c£©£¬£¨b£¬d£©£¬£¨b£¬e£©£¬£¨b£¬f£©¹²8ÖÖ£¬ËùÒÔʼþM¡°À´×Ô²»Í¬³ÇÊС±µÄ¸ÅÂÊÊÇ$p£¨M£©=\frac{8}{15}$£®£¨12·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¸ÅÂÊͳ¼ÆµÄÏà¹ØÖªÊ¶£¬¿¼²é¾¥Ò¶Í¼£¬¶ÀÁ¢ÐÔ¼ìÑé֪ʶµÄÔËÓ㬿¼²é¸ÅÂʵļÆË㣬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÒÑ֪˫ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1£¨a£¾0£¬b£¾0£©µÄ×óÓÒ¶¥µã·Ö±ðΪA1¡¢A2£¬MÊÇË«ÇúÏßÉÏÒìÓÚA1¡¢A2µÄÈÎÒâÒ»µã£¬Ö±ÏßMA1ºÍMA2·Ö±ðÓëyÖá½»ÓÚP£¬QÁ½µã£¬OÎª×ø±êԵ㣬Èô|OP|£¬|OM|£¬|OQ|ÒÀ´Î³ÉµÈ±ÈÊýÁУ¬ÔòË«ÇúÏßµÄÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | $£¨{\sqrt{2}£¬+¡Þ}£©$ | B£® | $[{\sqrt{2}£¬+¡Þ}£©$ | C£® | $£¨{1£¬\sqrt{2}}£©$ | D£® | $£¨{1£¬\sqrt{2}}]$ |
1£®É躯Êýf£¨x£©=£¨x-2£©n£¬ÆäÖÐ$n=4\int_{-¦Ð}^{2¦Ð}{sin£¨{x+¦Ð}£©dx}$£¬Ôòf£¨x£©µÄÕ¹¿ªÊ½Öк¬x6µÄÏîµÄϵÊýΪ£¨¡¡¡¡£©
| A£® | -112 | B£® | -56 | C£® | 112 | D£® | 56 |
18£®Èô¼¯ºÏA={x|1¡Üx¡Ü2}£¬B={x|x2-3x+2=0}£¬ÔòA¡ÉBµÈÓÚ£¨¡¡¡¡£©
| A£® | {x|1¡Üx¡Ü2} | B£® | £¨1£¬2£© | C£® | {1£¬2} | D£® | ∅ |
5£®ÒÑÖªÊýÁÐ{an}ÊǵȲîÊýÁÐÇÒÂú×ãa1=1£¬a3=7£¬ÉèSnΪÊýÁÐ{£¨-1£©nan}µÄǰnÏîºÍ£¬ÔòS2017Ϊ£¨¡¡¡¡£©
| A£® | -3025 | B£® | -3024 | C£® | 2017 | D£® | 9703 |
15£®Í¬Ê±¾ßÓÐÐÔÖÊ£º¡°¢Ù×îСÕýÖÜÆÚÊǦУ»¢ÚͼÏó¹ØÓÚÖ±Ïß$x=\frac{¦Ð}{3}$¶Ô³Æ£»¢ÛÔÚ$[{-\frac{¦Ð}{6}£¬\frac{¦Ð}{3}}]$ÉÏÊÇÔöº¯Êý£®¡±µÄÒ»¸öº¯ÊýΪ£¨¡¡¡¡£©
| A£® | $y=sin£¨{\frac{x}{2}+\frac{¦Ð}{6}}£©$ | B£® | $y=cos£¨{\frac{x}{2}-\frac{¦Ð}{6}}£©$ | C£® | $y=cos£¨{2x+\frac{¦Ð}{6}}£©$ | D£® | $y=sin£¨{2x-\frac{¦Ð}{6}}£©$ |
2£®ÒÑÖª¼¯ºÏM={x|y=$\sqrt{1-3x}$}£¬¼¯ºÏN={x|x2-1£¼0}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
| A£® | {x|-1£¼x¡Ü$\frac{1}{3}$} | B£® | {x|x¡Ý$\frac{1}{3}$} | C£® | {x|x¡Ü$\frac{1}{3}$} | D£® | {x|$\frac{1}{3}$¡Üx£¼1} |
19£®
Ë®³µÔڹŴúÊǽøÐйà¸ÈÒýË®µÄ¹¤¾ß£¬ÊÇÈËÀàµÄÒ»Ïî¹ÅÀϵķ¢Ã÷£¬Ò²ÊÇÈËÀàÀûÓÃ×ÔÈ»ºÍ¸ÄÔì×ÔÈ»µÄÏóÕ÷£®ÈçͼÊÇÒ»¸ö°ë¾¶ÎªRµÄË®³µ£¬Ò»¸öË®¶·´ÓµãA£¨3$\sqrt{3}$£¬-3£©³ö·¢£¬ÑØÔ²Öܰ´ÄæÊ±Õë·½ÏòÔÈËÙÐýת£¬ÇÒÐýתһÖÜÓÃʱ60Ã룮¾¹ýtÃëºó£¬Ë®¶·Ðýתµ½Pµã£¬ÉèPµÄ×ø±êΪ£¨x£¬y£©£¬Æä×Ý×ø±êÂú×ãy=f£¨t£©=Rsin£¨¦Øt+¦Õ£©£¨t¡Ý0£¬¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}}$£©£®ÔòÏÂÁÐÐðÊö´íÎóµÄÊÇ£¨¡¡¡¡£©
| A£® | $R=6£¬¦Ø=\frac{¦Ð}{30}£¬¦Õ=-\frac{¦Ð}{6}$ | |
| B£® | µ±t¡Ê[35£¬55]ʱ£¬µãPµ½xÖáµÄ¾àÀëµÄ×î´óֵΪ6 | |
| C£® | µ±t¡Ê[10£¬25]ʱ£¬º¯Êýy=f£¨t£©µ¥µ÷µÝ¼õ | |
| D£® | µ±t=20ʱ£¬$|{PA}|=6\sqrt{3}$ |
14£®É躯Êýf£¨x£©=£¨x-a£©2+£¨ln x2-2a£©2£¬ÆäÖÐx£¾0£¬a¡ÊR£¬´æÔÚx0ʹµÃf£¨x0£©¡Üb³ÉÁ¢£¬ÔòʵÊýbµÄ×îСֵΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{5}$ | B£® | $\frac{2}{5}$ | C£® | $\frac{4}{5}$ | D£® | 1 |