题目内容

已知△ABC的两个顶点A,B分别为椭圆x2+5y2=5的左,右焦点,且三角形三内角A,B,C满足sinB-sinA=
1
2
sinC,
(1)求|AB|;
(2)求顶点C的轨迹方程.
考点:轨迹方程,正弦定理
专题:圆锥曲线的定义、性质与方程
分析:(1)椭圆x2+5y2=5化为
x2
5
+y2
=1.可得a2=5,b=1,c2=4.即可得到A(-2,0),B(2,0),|AB|.
(2)由sinB-sinA=
1
2
sinC,由正弦定理可得:|CA|-|CB|=
1
2
|AB|=2<|AB|.即可得到顶点C的轨迹是以A,B为焦点的双曲线的右支.
解答: 解:(1)椭圆x2+5y2=5化为
x2
5
+y2
=1.
可得a2=5,b=1,c2=4.
A(-2,0),B(2,0),|AB|=4.
(2)∵sinB-sinA=
1
2
sinC,
由正弦定理可得:|CA|-|CB|=
1
2
|AB|=2<|AB|.
∴顶点C的轨迹是以A,B为焦点的双曲线的右支.
其方程为x2-
y2
3
=1(x≥1).
点评:本题考查了椭圆的标准方程、双曲线的标准方程、正弦定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网