题目内容
已知数列{an}的前n项和Sn=3n-1,数列{bn}满足b1=1,bn=3bn-1+an(n≥2),记数列{bn}的前n项和为Tn.
(1)证明{an}为等比数列;
(2)求Tn.
(1)证明{an}为等比数列;
(2)求Tn.
考点:等差数列与等比数列的综合,数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得a1=S1=3-1=2,an=Sn-Sn-1=3n-3n-1=
•3n,由此能证明{an}为首项为2,公比为3的等比数列.
(2)由已知得
=
+
,从而{
}是首项为
,公差为
的等差数列,进而bn=(2n-1)•3n-1,由此利用错位相减法能求出Tn=(n+1)•3n+1.
| 2 |
| 3 |
(2)由已知得
| bn |
| 3n |
| bn-1 |
| 3n-1 |
| 2 |
| 3 |
| bn |
| 3n |
| 1 |
| 3 |
| 2 |
| 3 |
解答:
(1)证明:∵数列{an}的前n项和Sn=3n-1,
∴n=1时,a1=S1=3-1=2,
n≥2时,an=Sn-Sn-1=3n-3n-1=
•3n,
当n=1时,上式成立,
∴an=
•3n=2•3n-1,n∈N*,
=
=3,
∴{an}为首项为2,公比为3的等比数列.
(2)解:∵数列{bn}满足b1=1,bn=3bn-1+an(n≥2),
∴n≥2时,bn=3bn-1+2•3n-1,
∴
=
+
,
又
=
,∴{
}是首项为
,公差为
的等差数列,
∴
=
+(n-1)×
=
n-
,
∴bn=(2n-1)•3n-1,
∴Tn=1•30+3•3+5•32+…+(2n-1)•3n-1,①
3Tn=1•3+3•32+5•33+…+(2n-1)•3n,②
①-②,得-2Tn=1+2(3+32+33+…+3n-1)-(2n-1)•3n
=1+2×
-(2n-1)•3n
=-2-(2n-2)•3n,
∴Tn=(n+1)•3n+1.
∴n=1时,a1=S1=3-1=2,
n≥2时,an=Sn-Sn-1=3n-3n-1=
| 2 |
| 3 |
当n=1时,上式成立,
∴an=
| 2 |
| 3 |
| an+1 |
| an |
| 2•3n |
| 2•3n-1 |
∴{an}为首项为2,公比为3的等比数列.
(2)解:∵数列{bn}满足b1=1,bn=3bn-1+an(n≥2),
∴n≥2时,bn=3bn-1+2•3n-1,
∴
| bn |
| 3n |
| bn-1 |
| 3n-1 |
| 2 |
| 3 |
又
| b1 |
| 3 |
| 1 |
| 3 |
| bn |
| 3n |
| 1 |
| 3 |
| 2 |
| 3 |
∴
| bn |
| 3n |
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
∴bn=(2n-1)•3n-1,
∴Tn=1•30+3•3+5•32+…+(2n-1)•3n-1,①
3Tn=1•3+3•32+5•33+…+(2n-1)•3n,②
①-②,得-2Tn=1+2(3+32+33+…+3n-1)-(2n-1)•3n
=1+2×
| 3(1-3n-1) |
| 1-3 |
=-2-(2n-2)•3n,
∴Tn=(n+1)•3n+1.
点评:本题考查等比数列的证明,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
已知向量
,
,
满足|
|=|
|+|
|,则( )
| AB |
| AC |
| BC |
| AB |
| AC |
| BC |
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
下列说法不正确的是( )
| A、0∈N | ||
| B、-5∈Z | ||
| C、π∈Q | ||
D、-
|