题目内容
17.高为$\sqrt{2}$的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,SA⊥面ABCD,则底面ABCD的中心与顶点S之间的距离为( )| A. | $\frac{\sqrt{10}}{2}$ | B. | $\frac{\sqrt{2}+\sqrt{3}}{2}$ | C. | $\frac{3}{2}$ | D. | $\sqrt{2}$ |
分析 由题意可知ABCD 是小圆,对角线长为$\sqrt{2}$,四棱锥的高为$\sqrt{2}$,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD的中心与顶点S之间的距离.
解答 解:由题意可知ABCD 是小圆,对角线长为$\sqrt{2}$,四棱锥的高为$\sqrt{2}$,点S,A,B,C,D均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,
所以底面ABCD的中心与顶点S之间的距离为:$\sqrt{2+\frac{1}{2}}$=$\frac{\sqrt{10}}{2}$.
故选:A.
点评 本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.
练习册系列答案
相关题目
8.复平面内表示复数$\frac{1+i}{i}$的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
5.已知直线l,m,n,平面α,m?α,n?α,则“l⊥α”是“l⊥m且l⊥n”的( )条件.
| A. | 充分不必要 | B. | 必要不充分 | ||
| C. | 充要条件 | D. | 既不充分也不必要 |
2.在等差数列{an}中,已知a5+a7=16,则该数列前11项和为S11=( )
| A. | 176 | B. | 143 | C. | 88 | D. | 58 |
9.双曲线的虚轴长为4,离心率e=$\frac{{\sqrt{6}}}{2},{F_1},{F_2}$分别是它的左右焦点,若过F1的直线与双曲线的左支交与A、B两点,且|AB|是|AF1|,|AF2|的等差中项,则|BF1|等于( )
| A. | $8\sqrt{2}$ | B. | $4\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | 8 |