题目内容
已知数列{an}的首项a1=
,an+1=
,n=1,2,3,….令bn=
-1.
(Ⅰ)证明:数列{bn}是等比数列,并求出数列{bn}的通项公式bn;
(Ⅱ)令cn=2n•bn,求数列{cn}的前n项和Tn.
| 2 |
| 3 |
| 2an |
| an+1 |
| 1 |
| an |
(Ⅰ)证明:数列{bn}是等比数列,并求出数列{bn}的通项公式bn;
(Ⅱ)令cn=2n•bn,求数列{cn}的前n项和Tn.
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出1+
=
,从而得到
(
-1)=
-1,再由
-1=
-1=
,能证明{bn}是首项为
,公比为
的等比数列,由此得到bn=
-1=(
)n.
(Ⅱ)由cn=2n•bn=2n•(
)n,利用错位相减法能求出数列{cn}的前n项和Tn.
| 1 |
| an |
| 2 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| 2 |
(Ⅱ)由cn=2n•bn=2n•(
| 1 |
| 2 |
解答:
(Ⅰ)证明:∵an+1=
,
∴an+1an +an+1=2an,∴1+
=
,
∴
+
=
,∴
(
-1)=
-1,
∵a1=
,∴
-1=
-1=
,
∵bn=
-1,∴{bn}是首项为
,公比为
的等比数列,
∴bn=
-1=(
)n.
(Ⅱ)解:∵cn=2n•bn=2n•(
)n,
∴Tn=2•
+4•
+6•
+…+2n•
,①
Tn=2•
+4•
+6•
+…+2n•
,②
∴①-②,得
Tn=1+
+
+…+
-
=
-
=2-
.
∴Tn =4-
.
| 2an |
| an+1 |
∴an+1an +an+1=2an,∴1+
| 1 |
| an |
| 2 |
| an+1 |
∴
| 1 |
| 2 |
| 1 |
| 2an |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| an+1 |
∵a1=
| 2 |
| 3 |
| 1 |
| a1 |
| 3 |
| 2 |
| 1 |
| 2 |
∵bn=
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
∴bn=
| 1 |
| an |
| 1 |
| 2 |
(Ⅱ)解:∵cn=2n•bn=2n•(
| 1 |
| 2 |
∴Tn=2•
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 24 |
| 1 |
| 2n+1 |
∴①-②,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| n |
| 2n |
=
1-
| ||
1-
|
| n |
| 2n |
=2-
| n+2 |
| 2n |
∴Tn =4-
| n+2 |
| 2n-1 |
点评:本题考查数列是等比数列的证明,考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
巳知集合A={x|x2<1},B=[0,1],则A∩B=( )
| A、(0,1) |
| B、〔0,1] |
| C、[0,1) |
| D、[0,1] |
设直线l与曲线f(x)=x3+2x+1有三个不同的交点A、B、C,且|AB|=|BC|=
,则直线l的方程为( )
| 10 |
| A、y=5x+1 | ||
| B、y=4x+1 | ||
C、y=
| ||
| D、y=3x+1 |
等比数列{an}的前n项和为Sn,若S10=20,S20=30,则S30=( )
| A、35 | B、40 | C、45 | D、60 |
已知log
a>1,(
)b>1,2c=
,则( )
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| A、a>b>c |
| B、c>a>b |
| C、a>c>b |
| D、c>b>a |