题目内容
设实数x,y满足
,则目标函数z=2x+y取得最大值时的最优解为 .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.
解答:
解:作出不等式组对应的平面区域如图:
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A,
直线y=-2x+z的截距最大,此时z最大,
由
,解得
,
即A(4,2),
故答案为:(4,2)
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过点A,
直线y=-2x+z的截距最大,此时z最大,
由
|
|
即A(4,2),
故答案为:(4,2)
点评:本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
若实数x,y满足条件
,则2x•(
)y的最小值是( )
|
| 1 |
| 4 |
A、
| ||
B、
| ||
C、
| ||
| D、1 |