题目内容
已知数列{an}是等差数列,且a2=3,并且d=2,则
+
+…+
= .
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| a9a10 |
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件得an=3+(n-2)×2=2n-1,再由
=
=
(
-
),利用裂项求和法能求出
+
+…+
的值.
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| a9a10 |
解答:
解:∵数列{an}是等差数列,且a2=3,d=2,
∴an=3+(n-2)×2=2n-1,
∴
=
=
(
-
),
∴
+
+…+
=
(1-
+
-
+…+
-
)
=
(1-
)
=
.
故答案为:
.
∴an=3+(n-2)×2=2n-1,
∴
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| a9a10 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 17 |
| 1 |
| 19 |
=
| 1 |
| 2 |
| 1 |
| 19 |
=
| 9 |
| 19 |
故答案为:
| 9 |
| 19 |
点评:本题考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
设离散型随机变量ξ的概率分布列如表,则下列各式中成立的是( )
| ξ | -1 | 0 | 1 | 2 | 3 |
| P | 0.10 | a | 0.10 | 0.20 | 0.40 |
| A、P(ξ<1.5)=0.4 |
| B、P(ξ>-1)=1 |
| C、P(ξ<3)=1 |
| D、P(ξ<0)=0 |
设当x=θ时,函数f(x)=2sinx-cosx取得最大值,则cosθ=( )
A、
| ||||
B、
| ||||
C、-
| ||||
D、-
|