题目内容
已知数列{an}满足:a1=
,an2+2an-2an+1=0,用[x]表示不超过x的最大整数,则[
+
+
+…+
]= .
| 1 |
| 3 |
| 1 |
| a1+2 |
| 1 |
| a2+2 |
| 1 |
| a3+2 |
| 1 |
| a2014+2 |
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件得
=
-
,所以[
+
+
+…+
]=[
-
],由此能求出结果.
| 1 |
| an+2 |
| 1 |
| an |
| 1 |
| an+1 |
| 1 |
| a1+2 |
| 1 |
| a2+2 |
| 1 |
| a3+2 |
| 1 |
| a2014+2 |
| 1 |
| a1 |
| 1 |
| a2015 |
解答:
解:∵a1=
,an2+2an-2an+1=0,
∴
=
=
(
-
),
∴
=
-
,
∴[
+
+
+…+
]
=[
-
+
-
+
-
+…+
-
]
=[
-
],
∵an2+2an-2an+1=0,
∴2an+1-2an=an2>0,
∴{an}是增数列,
∵
+
-2a2=0,解得a2=
,
+
-2a3=0,解得a3=
,
+
-2a4=0,解得a4=
,
∵a4<a2015,∴0<
<1,
∴[
-
]=2.
故答案为:2.
| 1 |
| 3 |
∴
| 1 |
| 2an+1 |
| 1 |
| an2+2an |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| an+2 |
∴
| 1 |
| an+2 |
| 1 |
| an |
| 1 |
| an+1 |
∴[
| 1 |
| a1+2 |
| 1 |
| a2+2 |
| 1 |
| a3+2 |
| 1 |
| a2014+2 |
=[
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| a3 |
| 1 |
| a4 |
| 1 |
| a2014 |
| 1 |
| a2015 |
=[
| 1 |
| a1 |
| 1 |
| a2015 |
∵an2+2an-2an+1=0,
∴2an+1-2an=an2>0,
∴{an}是增数列,
∵
| 1 |
| 9 |
| 2 |
| 3 |
| 7 |
| 18 |
| 49 |
| 324 |
| 7 |
| 9 |
| 301 |
| 162 |
| 90601 |
| 26244 |
| 301 |
| 81 |
| 188125 |
| 13122 |
∵a4<a2015,∴0<
| 1 |
| a2015 |
∴[
| 1 |
| a1 |
| 1 |
| a2015 |
故答案为:2.
点评:本题考查数列的前2014项的和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
三角形ABC周长等于20,面积等于10
,∠A=60°,则∠A所对边长a为( )
| 3 |
| A、5 | B、7 | C、6 | D、8 |