题目内容
已知函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在[-1,3]上的解集为 .
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据函数的奇偶性和周期性求出函数f(x)的解析式,利用不等式的性质即可得到结论.
解答:
解:若x∈[-2,0],则-x∈[0,2],此时f(-x)=-x-1,
∵f(x)是偶函数,∴f(-x)=-x-1=f(x),即f(x)=-x-1,x∈[-2,0],
若x∈[2,4],则x-4∈[-2,0],
∵函数的周期是4,∴f(x)=f(x-4)=-(x-4)-1=3-x,
即f(x)=
,作出函数f(x)在[-1,3]上图象如图,
若0<x≤3,则不等式xf(x)>0等价为f(x)>0,此时1<x<3,
若-1≤x≤0,则不等式xf(x)>0等价为f(x)<0,此时-1<x<0,
综上不等式xf(x)>0在[-1,3]上的解集为(1,3)∪(-1,0),
故答案为:(1,3)∪(-1,0)
∵f(x)是偶函数,∴f(-x)=-x-1=f(x),即f(x)=-x-1,x∈[-2,0],
若x∈[2,4],则x-4∈[-2,0],
∵函数的周期是4,∴f(x)=f(x-4)=-(x-4)-1=3-x,
即f(x)=
|
若0<x≤3,则不等式xf(x)>0等价为f(x)>0,此时1<x<3,
若-1≤x≤0,则不等式xf(x)>0等价为f(x)<0,此时-1<x<0,
综上不等式xf(x)>0在[-1,3]上的解集为(1,3)∪(-1,0),
故答案为:(1,3)∪(-1,0)
点评:本题主要考查不等式的求解,利用函数奇偶性和周期性求出对应的解析式,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
三角形ABC周长等于20,面积等于10
,∠A=60°,则∠A所对边长a为( )
| 3 |
| A、5 | B、7 | C、6 | D、8 |
已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C的离心率为( )
A、
| ||||
B、
| ||||
C、
| ||||
| D、2 |
若a=
x2dx,b=
xdx,c=
exdx,则a,b,c的大小关系为( )
| ∫ | 1 0 |
| ∫ | 1 0 |
| ∫ | 1 0 |
| A、a<b<c |
| B、b<a<c |
| C、b<c<a |
| D、c<b<a |