题目内容
过原点O的椭圆有一个焦点F(0,4),且长轴长2a=10,求此椭圆的中心的轨迹方程.
考点:轨迹方程
专题:圆锥曲线的定义、性质与方程
分析:设出中心坐标,可得另一焦点坐标,利用长轴长2a=10,即可求椭圆的中心的轨迹方程.
解答:
解:设椭圆的中心O1(x0,y0),则另一焦点F1(2x0,2y0-8)
∵长轴长2a=10,
∴|OF|+|OF1|=2a,
∴|OF1|=2a-|OF|=10-4=6
∴(2x0)2+(2y0-8)2=36,
∴所求椭圆中心的轨迹方程为x2+(y-4)2=9.
∵长轴长2a=10,
∴|OF|+|OF1|=2a,
∴|OF1|=2a-|OF|=10-4=6
∴(2x0)2+(2y0-8)2=36,
∴所求椭圆中心的轨迹方程为x2+(y-4)2=9.
点评:本题考查轨迹方程,考查椭圆的定义,考查学生的计算能力,正确理解椭圆的定义是关键.
练习册系列答案
相关题目
已知正方形的四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),点D,E分别在线段OC,AB上运动,且OD=BE,设AD与OE交于点G,则点G的轨迹方程是( )
| A、y=x(1-x)(0≤x≤1) |
| B、x=y(1-y)(0≤y≤1) |
| C、y=x2(0≤x≤1) |
| D、y=1-x2(0≤x≤1) |
一个酒杯的轴截面是抛物线的一部分,它的方程是x2=2y(0≤y≤20).在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r的范围是( )
| A、0<r≤1 |
| B、0<r<1 |
| C、0<r≤2 |
| D、0<r<2 |
已知直线L:x+y-9=0和圆M:2x2+2y2-8x-8y-1=0,点A在直线L上,B,C为圆M上的两点,在△ABC中,∠BAC=45°,AB过圆心M,则点A的横坐标取值范围为( )
| A、[0,3] |
| B、[3,6] |
| C、(0,3] |
| D、(3,6) |
在直角梯形ABCD中,∠A=90°,∠B=30°,AB=2
,BC=2,点E在线段CD上,若
=
+μ
,则μ的取值范围是( )
| 3 |
| AE |
| AD |
| AB |
| A、[0,1] | ||
B、[0,
| ||
C、[0,
| ||
D、[
|