题目内容

4.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱BB1上,且B1D⊥A1F,A1C1⊥A1B1
(Ⅰ)若AC=3,AB=AA1=4,求三棱锥B-DEB1的体积;
(Ⅱ)求证:平面B1DE⊥平面A1C1F.

分析 (Ⅰ)由${V}_{B-DE{B}_{1}}$=${V}_{{B}_{1}-BDE}$,能求出三棱锥B-DEB1的体积.
(Ⅱ)推导出AA1⊥A1C1,A1C1⊥A1B1,从而A1C1⊥平面ABB1A1,进而A1C1⊥B1D,再由B1D⊥A1F,能证明平面B1DE⊥平面A1C1F.

解答 (本小题满分12分)
解:(Ⅰ)∵D,E分别为AB,BC的中点,
∴DE∥AC,$DE=\frac{1}{2}AC=\frac{3}{2}$,$BD=\frac{1}{2}AB=2$.(2分)
∵A1C1⊥A1B1,∴AC⊥AB,DE⊥DB.(3分)
∴${S_{△BDE}}=\frac{1}{2}BD•DE=\frac{1}{2}×2×\frac{3}{2}=\frac{3}{2}$.(4分)
∵ABC-A1B1C1是直三棱柱,∴B1B⊥平面ABC,BB1=AA1=4,
∴${V}_{{B}_{1}-BDE}$=$\frac{1}{3}×B{B}_{1}$×S△BDE=$\frac{1}{3}×4×\frac{3}{2}$=2,(5分)
∵${V}_{B-DE{B}_{1}}$=${V}_{{B}_{1}-BDE}$,∴三棱锥B-DEB1的体积为2.(6分)
证明:(Ⅱ)在直三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C,
∵A1C1?平面A1B1C1,∴AA1⊥A1C1.(7分)
又∵A1C1⊥A1B1,AA1?平面ABB1A1,A1B1?平面ABB1A1,A1B1∩AA1=A1
∴A1C1⊥平面ABB1A1.(8分)
∵B1D?平面ABB1A1,∴A1C1⊥B1D.(9分)
又∵B1D⊥A1F,A1C1?平面A1C1F,A1F?平面A1C1F,A1C1∩A1F=A1
∴B1D⊥平面A1C1F.(11分)
∵直线B1D?平面B1DE,∴平面B1DE⊥平面A1C1F.(12分)

点评 本题三棱锥的体积的求法,考查面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网