题目内容
15.设{an}是等差数列,若a4+a5+a6=21,则S9=63.分析 由等差数列的通项公式求出a5=7,再由等差数列的前n项和公式得${S}_{9}=\frac{9}{2}({a}_{1}+{a}_{9})=9{a}_{5}$,由此能求出结果.
解答 解:∵{an}是等差数列,a4+a5+a6=21,
∴a4+a5+a6=3a5=21,解得a5=7,
∴${S}_{9}=\frac{9}{2}({a}_{1}+{a}_{9})=9{a}_{5}$=63.
故答案为:63.
点评 本题考查等差数列的前9项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
6.复数z满足z(2+i)=3-i,则复数z在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
3.已知直线l:y=x-1,双曲线c1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,抛物线c2:y2=2x,直线l与c1相交于A,B两点,与c2交于C,D两点,若线段AB与CD的中点相同,则双曲线c1的离心率为( )
| A. | $\frac{\sqrt{6}}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{\sqrt{15}}{3}$ | D. | $\sqrt{3}$ |