题目内容

设F1,F2是椭圆的两个焦点,点P是以线段F1F2为直径的圆与椭圆的一个交点,若∠PF1F2=5∠PF2F1,则此椭圆的离心率为(  )
A、
2
3
B、
6
3
C、
2
2
D、
3
2
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由已知可得∠F1PF2=90°,再由∠PF1F2=5∠PF2F1求出∠PF1F2=15°,∠PF2F1=75°,结合正弦定理得到a,c的关系,则答案可求.
解答: 解:∵P是以F1F2为直径的圆与椭圆的一个交点,
∴∠F1PF2=90°,
∵∠PF1F2=5∠PF2F1
∴∠PF1F2=15°,∠PF2F1=75°,
∴|PF1|=|F1F2|sin∠PF2F1=2c•sin75°,
∴|PF2|=|F1F2|sin∠PF1F2=2c•sin15°,
∴2a=|PF1|+|PF2|=2c•sin75°+2c•sin15°=4csin45°cos30°=
2
2
×
3
2
c
=
6
c

∴a=
6
2
c

∴e=
c
a
=
6
3

故选:B.
点评:本题考查了椭圆的简单几何性质,考查了椭圆定义的运用,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网