题目内容
5.已知函数f(x)=aln(x+1)-x2,任意x1,x2∈(0,1),x1>x2时,都有f(x1+1)-f(x2+1)>x1-x2成立,则实数a的取值范围是( )| A. | a≥15 | B. | a>15 | C. | a<5 | D. | a≤5 |
分析 问题转化为y=f(x+1)-x=aln(x+2)-x2-3x-1在(0,1)上递增,求出函数的导数,问题转化为a≥(x+2)(2x+3)在(0,1)恒成立,求出a的范围即可.
解答 解:f(x1+1)-f(x2+1)>x1-x2成立,
即f(x1+1)-x1>f(x2+1)-x2,x1,x2∈(0,1)恒成立,
∴y=f(x+1)-x=aln(x+2)-x2-3x-1在(0,1)上递增,
∴y′≥0恒成立即a≥(x+2)(2x+3)在(0,1)恒成立,
∵(x+2)(2x+3)<15,
∴a≥15,
故选:A.
点评 本题考查导数的应用,函数的恒成立问题,以及利用函数的单调性求函数的最值.
练习册系列答案
相关题目
16.已知数列{an},{bn}满足a1=$\frac{1}{2},{a_n}+{b_n}=1,{b_{n+1}}=\frac{b_n}{{1-{a_n}^2}}$,则b2017=( )
| A. | $\frac{2017}{2018}$ | B. | $\frac{2018}{2017}$ | C. | $\frac{2019}{2018}$ | D. | $\frac{2018}{2019}$ |
13.已知数列2008,2009,1,-2008,…若这个数列从第二项起,每一项都等于它的前后两项之和,则这个数列的前2017项之和S2017等于( )
| A. | 0 | B. | 2008 | C. | 2017 | D. | 4017 |
20.要证明x<$\sqrt{y}$,只要证明不等式M,不等式M不可能是( )
| A. | x2<y | B. | |x|<$\sqrt{y}$ | C. | -x<$\sqrt{y}$ | D. | x<0 |
17.已知△ABC中,∠A,∠B,∠C的对边长度分别为a,b,c,已知点O为该三角形的外接圆圆心,点D,E,F分别为边BC,AC,AB的中点,则OD:OE:OF=( )
| A. | a:b:c | B. | $\frac{1}{a}:\frac{1}{b}:\frac{1}{c}$ | C. | sinA:sinB:sinC | D. | cosA:cosB:cosC |
15.函数f(x)=x3+ax2+(a-3)x(a∈R)的导函数是f'(x),若f'(x)是偶函数,则以下结论正确的是( )
| A. | y=f(x)的图象关于y轴对称 | B. | y=f(x)的极小值为-2 | ||
| C. | y=f(x)的极大值为-2 | D. | y=f(x)在(0,2)上是增函数 |