题目内容
若实数x,y满足约束条件
,则z=2x-y的最小值是 .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=2x-y的最小值.
解答:
解:由z=2x-y,得y=2x-z,作出不等式对应的可行域(阴影部分),
平移直线y=2x-z,由平移可知当直线y=2x-z,
经过点A时,直线y=2x-z的截距最大,此时z取得最小值,
由
,解得
,即A(-2,3).
将A的坐标代入z=2x-y,得z=-4-3=-7,
即目标函数z=2x-y的最小值为-7.
故答案为:-7
平移直线y=2x-z,由平移可知当直线y=2x-z,
经过点A时,直线y=2x-z的截距最大,此时z取得最小值,
由
|
|
将A的坐标代入z=2x-y,得z=-4-3=-7,
即目标函数z=2x-y的最小值为-7.
故答案为:-7
点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
数列{an}的前n项和为Sn,已知Sn=1-2+3-4+…+(-1)n-1•n,则S17=( )
| A、9 | B、8 | C、17 | D、16 |
已知点(n,an)(n∈N*)都在直线3x-y-24=0上,那么数列{an}中有( )
| A、a7+a9>0 |
| B、a7+a9<0 |
| C、a7+a9=0 |
| D、a7•a9=0 |