题目内容
10.已知函数f(x)=$\left\{\begin{array}{l}{x}^{2}+(4a-3)x+3a,x<0\\-sinx,0≤x<\frac{π}{2}\end{array}\right.$在定义域内为单调递减函数,则a的取值范围为( )| A. | (0,$\frac{4}{3}$) | B. | $(0,\left.\frac{4}{3}]$ | C. | $[0,\right.\frac{4}{3})$ | D. | $[0,\left.\frac{4}{3}]\right.$ |
分析 根据函数的单调性得到关于a的不等式,解出即可.
解答 解:若f(x)在定义域内递减,
则$-\frac{4a-3}{2}$≥0,且3a≥0,
解得:0≤a≤$\frac{3}{4}$,
故选:D.
点评 本题考查了二次函数的单调性以及正弦函数的性质,是一道基础题.
练习册系列答案
相关题目
18.已知x>0,y>0且2x+3y=8,则$\frac{2}{x}+\frac{3}{y}$的最小值为( )
| A. | $\frac{25}{8}$ | B. | $\frac{25}{4}$ | C. | 25 | D. | $\frac{4}{25}$ |
15.下列叙述中,正确的是( )
| A. | $\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow{0}$ | |
| B. | 若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|且$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$ | |
| C. | 若|$\overrightarrow{a}$-$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则$\overrightarrow{a}$⊥$\overrightarrow{b}$ | |
| D. | 若向量$\overrightarrow{b}$与向量$\overrightarrow{a}$共线,则有且只有一个实数λ,使得$\overrightarrow{b}$=λ$\overrightarrow{a}$ |
2.实数a,b,c不全为0等价于为( )
| A. | a,b,c均不为0 | B. | a,b,c中至多有一个为0 | ||
| C. | a,b,c中至少有一个为0 | D. | a,b,c中至少有一个不为0 |