题目内容
2.正方体ABCD-A1B1C1D1的棱和六个面的对角线共24条,其中与体对角线AC1垂直的有6条.分析 连接AC,能推导出BD、A1B,A1D,B1D1,B1D,C1D都与AC1垂直.正方体ABCD-A1B1C1D1的棱中没有与AC1垂直的棱,由此能求出结果.
解答 解:如图,连接AC,则BD⊥AC.![]()
在正方体ABCD-AA1B1C1D1中,
∵C1C⊥平面BCD,
BD?平面BCD,
∴C1C⊥BD,
又AC∩CC1=C,
∴BD⊥平面ACC1,
∵AC1?平面ACC1,
∴AC1⊥BD.
同样A1B,A1D,B1D1,CD1,B1C都与AC1垂直.
正方体ABCD-A1B1C1D1的棱中没有与AC1垂直的棱,
故正方体ABCD-A1B1C1D1的棱和六个面的对角线共24条,其中与体对角线AC1垂直的有6条.
故答案为:6.
点评 本题考查满足垂直条件的直线的条数的求法,考查二面角、空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数形结合、化归与转化思想,是中档题.
练习册系列答案
相关题目
8.已知集合A={x|7<2x<33,x∈N},B={x|log3(x-1)<1},则A∩(∁RB)等于( )
| A. | {4,5} | B. | {3,4,5} | C. | {x|3≤x<4} | D. | {x|3≤x≤5} |
13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,右焦点为F,若以A为圆心,过点F的圆与直线3x-4y=0相切,则双曲线的离心率为( )
| A. | $\frac{7}{4}$ | B. | $\frac{7}{5}$ | C. | $\frac{8}{5}$ | D. | 2 |
10.已知椭圆x2+2y2=1的左、右焦点分别为F1、F2,过椭圆上任意一点P作切线l,记F1、F2到l的距离分别为d1、d2,则d1•d2=( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 2 | D. | 1 |
7.已知数列{an}为等比数列,且a1a13+2a72=5π,则cos(a2a12)的值为( )
| A. | $-\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
14.
体积为$18\sqrt{3}$的正三棱锥A-BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC=2:3,点E为线段BD上一点,且DE=2EB,过点E作球O的截面,则所得截面圆面积的取值范围是( )
| A. | [4π,12π] | B. | [8π,16π] | C. | [8π,12π] | D. | [12π,16π] |
11.治理大气污染刻不容缓,根据我国分布的《环境空气质量数(AQI)技术规定》:空气质量指数划分阶为0~50、51~100、101~150、151~200、201~300和大于300六级,对应于空气质量指数的六个级别,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于150时,可以户外运动;空气质量指数151及以上,不适合进行旅游等户外活动,以下是某市2016年12月中旬的空气质量指数情况:
(1)求12月中旬市民不适合进行户外活动的概率;
(2)一外地游客在12月中旬来该市旅游,想连续游玩两天,求适合旅游的概率.
| 时间 | 11日 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 | 20日 |
| AQI | 149 | 143 | 251 | 254 | 138 | 55 | 69 | 102 | 243 | 269 |
(2)一外地游客在12月中旬来该市旅游,想连续游玩两天,求适合旅游的概率.
12.若实数x,y满足不等式组$\left\{\begin{array}{l}x+2y-5≥0\\ x-y+1≥0\\ x+y-5≤0\end{array}\right.$,则z=(x-1)2+(y+1)2的最小值为( )
| A. | $\frac{53}{4}$ | B. | 10 | C. | $\frac{36}{5}$ | D. | 17 |